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Abstract: In this paper we construct the supersymmetric tensor hierarchy of N=1,

d=4 supergravity. We find some differences with the general bosonic construction of 4-

dimensional gauged supergravities.

The global symmetry group of N = 1, d = 4 supergravity consists of three factors:

the scalar manifold isometry group, the invariance group of the complex vector kinetic

matrix and the U(1) R-symmetry group. In contrast to (half)-maximal supergravities, the

latter two symmetries are not embedded into the isometry group of the scalar manifold.

We identify some components of the embedding tensor with Fayet-Iliopoulos terms and

we find that supersymmetry implies that the inclusion of R-symmetry as a factor of the

global symmetry group requires a non-trivial extension of the standard p-form hierarchy.

This extension involves additional 3- and 4-forms. One additional 3-form is dual to the

superpotential (seen as a deformation of the simplest theory).

We study the closure of the supersymmetry algebra on all the bosonic p-form fields of

the hierarchy up to duality relations. In order to close the supersymmetry algebra without

the use of duality relations one must construct the hierarchy in terms of supermultiplets.

Such a construction requires fermionic duality relations among the hierarchy’s fermions

and these turn out to be local.
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1 Introduction

The embedding tensor formalism,1 introduced in refs. [4–8] allows the study of the most

general gaugings of field theories and, in particular, of supergravity theories. So far, it has

been applied to maximally- and half-maximally-extended supergravities in various dimen-

sions [9–14], but not (or, at least, as we are going to see, not in detail2) to supergravities

with less supersymmetry, in particular N = 1, 2 in d = 4 and minimal supergravities

in d = 5, 6.

1For recent reviews see refs. [1–3].
2The N = 2, d = 4 case has been partially studied in ref. [31].
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A crucial difference between these two cases is that in the former the global symmetries

of the ungauged theories that act on the fermionic fields (the group of automorphisms of the

supersymmetry algebra or R-symmetry) Haut also act on the bosonic fields of the theory,

while in the latter they do not. More precisely, if we denote by G the global symmetry

group of the ungauged theories and by Gbos the subgroup of G that acts on the bosons, in

the maximal or half-maximal supergravities, Haut ⊂ Gbos = G. In particular, the scalars

parametrize the coset G/(Haut ×Hmatter) where Hmatter is related to the matter multiplets

and it is trivial in maximally-extended supergravities.

The situation in N = 1, 2 supergravities in d = 4 or in minimal supergravities in

d = 5, 6 is totally different: one can write G = Gbos ×Haut. Further, in theories with low

amounts of supersymmetry there may exist symmetries that act only on the vectors (and

spinors) but not on the scalars. This is particularly clear inN = 1, d = 4 supergravity where

one can take only vector supermultiplets and no chiral supermultiplets. The corresponding

symmetry group is the invariance group of the complex vector kinetic matrix. These facts

have to be taken into account properly and it is our goal to do so for the general case of

N = 1, d = 4 supergravity by extending the recently found general 4-dimensional tensor

hierarchy [15]. The 4-dimensional tensor hierarchy has also been studied in [16].

The tensor hierarchy [7, 8, 14–16]. is an interesting structure that arises as part of

the embedding tensor formalism. It consists of a system of p-form potential fields of all

degrees p = 1, · · · , d in terms of which one can construct gauge-covariant field strengths

of all degrees p = 2, · · · , d. The starting point in the construction of the tensor hierarchy

associated to the gauging of some theory is the field content and global symmetry group of

that theory. This global symmetry group is gauged using the embedding tensor formalism

and in order to have gauge-covariant field strengths it is usually necessary to introduce

higher-rank p-form potentials in a bootstrap procedure ending with the introduction of

p = d-form potentials.

The extra p-form fields that one has to introduce in the construction of the hierarchy

turn out to be dual to objects such as Noether currents, deformation parameters etc. of the

field theory and, therefore, do not add new degrees of freedom when we add them to the

theory. Only some of them are completely necessary to construct a gauge-invariant action

for the gauged field theory. In the d = 4 case these are the 1- and 2-forms. Then, why should

we be interested in the rest, apart from their need for consistency of the full construction?

Perhaps the main reason why one should be interested in all the higher-rank p-forms

of a theory is the relation between supergravity p-form potentials and supersymmetric

(p − 1)-extended objects (“branes”) which is at the core of many of the advances made

over the last decade in String Theory. While the branes associated to higher-rank p-forms

of the 10-dimensional supergravities are by now well known [22–25], little or nothing is

known about those of supergravities with lower supersymmetry and dimensionality like

N = 1, 2, d = 4 supergravity. For instance, in ref. [27] it was found that one can introduce,

consistently with supersymmetry, 2-forms in N = 2, d = 4 supergravity associated with

isometries of the scalar manifold to which strings couple. These 2-forms are “predicted”

by the 4-dimensional tensor hierarchy [8]. But the 4-dimensional tensor hierarchy also

predicts 3-forms and 4-forms and one would like to know if they can also be consistently
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introduced in the supergravity theory and the kind of extended objects (domain walls and

spacetime-filling branes) they may couple to.

There is another reason to be interested in the higher-rank p-forms, in particular for p =

d−1 of a supergravity theory. These (d−1)-form potentials are dual to the (“deformation”)

parameters that one can introduce consistently in the theory: gauge coupling constants

(represented by the embedding tensor), Stückelberg masses etc. Finding all the (d − 1)-

form potentials one can get information about the most general deformations (gaugings,

massive deformations. . . .) of the theory.

In this paper we are going to study the possible p-form potentials that one can consis-

tently add to N = 1, d = 4 supergravity, generalizing the results of ref. [19]. As we have

explained, this problem is related to the construction of the tensor hierarchy associated to

the most general (electric and magnetic) gauging of the theory. The global symmetry group

G of these theories can be written as3 Giso ×GV ×U(1)R where Giso is the isometry group

of the scalar manifold, GV is the invariance group of the complex vector kinetic matrix and

U(1)R the R-symmetry group. We will use the general results of [15] but supersymmetry

will force us to consider additional fields not contained in the standard tensor hierarchy. In

particular, we will find a 3-form that can be interpreted as the dual to the superpotential

which is a deformation of N = 1, d = 4 supergravity that is not related to a gauging. For

earlier work on related questions see refs. [19, 23, 24, 26, 27].

This paper is organized as follows: in section 2 we review the standard electric gauging

of perturbative symmetries of matter-coupled N = 1, d = 4 supergravity using the (electric

part of the) embedding tensor. This will allow us to introduce our notation and conventions.

In section 3 we introduce N = 1, d = 4 supergravity with electric and magnetic gaugings

of perturbative and non-perturbative symmetries of the theory. This requires the use of

the full embedding tensor and the introduction in the action of the 2-forms predicted by

the general 4-dimensional tensor hierarchy. At this point we have a completely consistent

theory with 1- and 2-forms and we do not need to introduce any higher-rank form potentials

unless we worry about the gauge-covariant field strength of the 2-forms. This is necessary,

though, to close (on-shell) the supersymmetry algebra on the 2-forms and we are led to

consider all the p-form potentials predicted by the 4-dimensional tensor hierarchy. We,

then, proceed to construct consistent (on-shell) supersymmetry transformations for all the

hierarchy p-form potentials in section 3.3 which will lead us to extend the field content

of the hierarchy. Finally, we review our results and present our conclusions in section 4.

The appendices contain summaries of useful formulae concerning Kähler geometry and the

4-dimensional tensor hierarchy.

2 Electrically gauged N = 1, d = 4 supergravity

In this section we are going to describe the “standard” gauged N = 1, d = 4 theory [28]

using the embedding-tensor formalism. By “standard” we mean that only perturbative

global symmetries of the ungauged theory have been gauged using as gauge fields the

3This splitting of G is factors is not unambiguous. In particular, U(1)R transformations can be combined

with transformations of the other two factors. We will discuss this in detail later.
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electric vector fields. In order to make as clear as possible the construction of the gauged

theory, we are going to describe first the ungauged theory and its global symmetries and

then the gauging procedure.

2.1 Ungauged N = 1, d = 4 supergravity

The basic4 field content of any N = 1, d = 4 ungauged supergravity theory is a supergravity

multiplet with one graviton eaµ and one chiral gravitino5 ψµ, nC chiral multiplets with as

many chiralinos χi and complex scalars Zi, i = 1, · · · , nC that parametrize an arbitrary

Kähler-Hodge manifold with metric Gij∗, and nV vector multiplets with as many Abelian

vector fields AΛ with field strengths FΛ = dAΛ and chiral gauginos λΛ, Λ = 1, · · · , nV .

In the ungauged theory the couplings between the above fields are determined by the

Kähler metric6 Gij∗ , an arbitrary holomorphic kinetic matrix fΛΣ(Z) with positive-definite

imaginary part and an arbitrary holomorphic superpotential W (Z) which appears through

the covariantly holomorphic section of Kähler weight (1,−1) L(Z,Z∗):

L(Z,Z∗) = W (Z)eK/2 , (2.1)

so its Kähler-covariant derivative given in eq. (A.7) for q̄ = −1 is Di∗L = eK/2∂i∗W = 0. In

absence of scalar fields, it is possible to introduce a constant superpotential L = W = w.

The chirality of the spinors is related to their Kähler weight: ψµ, λ
Σ and χi have

the same chirality and ψµ, λ
Σ and χ∗i∗ have the same Kähler weight (1/2,−1/2) so their

covariant derivatives take the form of eq. (A.9) with q = 1/2.

The action for the bosonic fields in the ungauged theory is

Su =

∫

[

⋆R− 2Gij∗dZ
i ∧ ⋆dZ∗ j∗ − 2ℑmfΛΣF

Λ ∧ ⋆FΣ + 2ℜefΛΣF
Λ ∧ FΣ − ⋆Vu

]

, (2.2)

where the scalar potential Vu is given by

Vu(Z,Z
∗) = −24|L|2 + 8Gij∗DiLDj∗L

∗ . (2.3)

In absence of scalar fields the constant superpotential L = W = w leads to an anti-de

Sitter-type cosmological constant

Vu = −24|w|2 . (2.4)

The supersymmetry transformation rules for the fermions (to first order in

fermions) are

δǫψµ = Dµǫ+ iLγµǫ
∗ =

[

∇µ +
i

2
Qµ

]

ǫ+ iLγµǫ
∗ , (2.5)

δǫλ
Λ =

1

2
6FΛ+ǫ , (2.6)

δǫχ
i = i 6∂Ziǫ∗ + 2Gij∗Dj∗L

∗ǫ . (2.7)

4In the ungauged classical theory (this work is only concerned with the classical theory) linear multiplets

can always be dualized into chiral multiplets and so we do not need to deal with them. After the gauging,

this is not possible in general, but the embedding tensor formalism will allow us to introduce the 2-forms

in at a later stage in a consistent form.
5The conventions used here are essentially those of refs. [19] and [17].
6The elements of Kähler geometry needed in this paper are reviewed in appendix A.
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The last terms in eqs. (2.5) and 2.7) are fermion shifts associated to the superpotential

which contribute quadratically to the potential Vu.

In absence of scalar fields and with constant superpotential L = W = w the fermion

shift in eq. (2.5) can be interpreted as part of an anti-de Sitter covariant derivative

δǫψµ = ∇µǫ+ iwγµǫ
∗ . (2.8)

The supersymmetry transformation rules for the bosonic fields (to the same order in

fermions) are

δǫe
a
µ = −

i

4
ψ̄µγ

aǫ∗ + c.c. , (2.9)

δǫA
Λ

µ =
i

8
λ̄Λγµǫ

∗ + c.c. , (2.10)

δǫZ
i =

1

4
χ̄iǫ . (2.11)

2.2 Perturbative symmetries of the ungauged theory

The possible matter couplings of N = 1, d = 4 supergravities are quite unrestricted. As

a result, the global symmetries of these theories can be very different from case to case.

Depending on the couplings it is possible to have, at the same time, symmetry transfor-

mations that only act on certain fields and not on the rest and symmetry transformations

that act simultaneously on all of them. Thus, it is not easy to describe all the possible

global symmetry groups in a form that is at the same time unified and detailed without

introducing a very complicated notation with several different kinds of indices. We are

going to try to find an equilibrium between simplicity and usefulness.

Therefore, we are going to denote the group of all the global symmetries of the theory

we work with7 by G and its generators by TA with A,B,C = 1, · · · , rankG. They satisfy

the Lie algebra

[TA, TB ] = −fAB
CTC . (2.12)

We denote by Gbos the subgroup of transformations of G that act on the bosonic fields

and its generators by Ta with a,b, c = 1, · · · , rankGbos ≤ rankG. They satisfy the

Lie subalgebra

[Ta, Tb] = −fab
cTc . (2.13)

In N = 1, d = 4 supergravity we have G = Gbos × U(1)R and rankGbos = rankG − 1.

We split the indices accordingly as A = (a, ♯). We may introduce a further splitting of the

indices of Gbos, a = (a, a) to distinguish between those that act on the scalars (holomorphic

isometries, belonging to the group8 Giso ⊂ Gbos) and those that do not. The latter, as we

7In this section we will use this notation only for the perturbative symmetries and later on we will use

the same notation for all symmetries. It should be easy to recognize from the context which case we are

talking about.
8Not all the isometries of the metric will be perturbative or even non-perturbative symmetries of the full

theory. They have to satisfy further conditions that we are going to study next. It is understood that, in or-

der not to have a complicated notation, we denote by Giso only those isometries which really are symmetries

of the full theory and not the full group of isometries of Gij∗ (although they may eventually coincide).
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will see, constitute the subgroup GV ⊂ Gbos of symmetries that only act on the vector

(super)fields and leave invariant the kinetic matrix fΛΣ. We have, then, Gbos = Giso ×GV,

since any bosonic symmetry transformation is either an element of Giso or of GV and further

since by construction no element of Giso can also be an element of GV and vice versa.

Let us describe the U(1)R transformations first. Under a U(1)R transformation with

constant parameter α♯, objects with Kähler weight q are multiplied by the phase e−iqα♯
.

All the fermions ψµ, λ
Σ, χ∗ i∗ , have a non-vanishing Kähler weight 1/2, though. All the

bosons have zero Kähler weight and do not transform under U(1)R.

The superpotential L has a non-vanishing Kähler weight and therefore transforms

under U(1)R. As a general rule, in the presence of a non-vanishing superpotential, U(1)R
will only be a symmetry of N = 1, d = 4 supergravity if the phase factor acquired by L in a

U(1)R transformation can be identified with a U(1) transformation of the scalars that leaves

invariant the rest of the action. These transformations, which are necessarily isometries of

the Kähler metric will be described next, but we can already give two examples to clarify

the above statement.

1. Let us consider the case with no chiral superfields and, therefore, no scalars and a

constant L = W = w giving rise to the potential eq. (2.4) and the gravitino su-

persymmetry transformation eq. (2.8). In this case U(1)R transforms the complex

constant w into e−iα♯
w and, therefore it is not a symmetry since symmetry transfor-

mations act on fields, not on coupling constants. Certainly, we can never gauge these

transformations since the local phases would transform a constant into a function

which is not a field.

2. Let us consider a theory with just one chiral supermultiplet, with Kähler potential

K = |Z|2 and superpotential W (Z) = wZ where w is some complex constant so L =

wZe|Z|2/2. In this case U(1)R transforms L(Z,Z∗) into L′(Z,Z∗) = we−iα♯
Ze|Z|2/2.

This transformation can be seen as a transformation of the scalar Z ′ = e−iα♯
Z which

happens to leave invariant the Kähler potential, metric etc. In this case U(1)R is a

symmetry when identified with a U(1) transformation acting on the complex scalar.

The Giso transformations with constant parameters αa act on the complex scalars Zi

as reparametrizations

δαZ
i = αaka

i(Z) . (2.14)

If these transformations are symmetries of the full theory they must, first, preserve the

metric Gij∗ and its Hermitean structure, which implies that the ka
is are the holomorphic

components of a set of Killing vectors {Ka = ka
i∂i + k∗a

i∗∂i∗} that satisfy the Lie algebra

of the group Giso

[Ka,Kb] = −fab
cKc . (2.15)

The holomorphic and antiholomorphic components satisfy, separately, the same Lie algebra.

We can formally add to this algebra, vanishing “Killing vectors” Ka associated to the

transformations that do not act on the scalars (but do act on the vectors), so we have the

full algebra of Gbos

[Ka,Kb] = −fab
cKc . (2.16)

– 6 –
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Further, we can also add another vanishing Killing vector K♯, formally associated to U(1)R
and write the full Lie algebra of G

[KA,KB ] = −fAB
CKC , (2.17)

so the reparametrizations of the scalars Zi can be written as

δαZ
i = αAkA

i(Z) . (2.18)

The Killing property of the reparametrizations only ensures the invariance of the kinetic

term for the scalars. In order to be symmetries of the full theory they must preserve the

entire Kähler-Hodge structure and leave invariant the superpotential and the kinetic terms

for the vector fields.

1. Let us start with the Kähler structure. The reparametrizations must leave the Kähler

potential invariant up to Kähler transformations, i.e., for each Killing vector KA

£AK ≡ £KA
K = kA

i∂iK + k∗A
i∗∂i∗K = λA(Z) + λ∗A(Z∗) . (2.19)

This relation is consistent for A = a, ♯, if

ℜeλa = ℜeλ♯ = 0 . (2.20)

Furthermore, the reparametrizations must preserve the Kähler 2-form J

£AJ = 0 . (2.21)

The closedness of J implies that £AJ = d(iKA
J ) and therefore the preservation

of the Kähler structure implies the existence of a set of real functions PA called

momentum maps such that

iKA
J = dPA , (2.22)

which is also consistent for A = a, ♯ if the corresponding

Pa = P♯ = constant . (2.23)

Using only eq. (2.19) a local solution to eq. (2.22) is provided by

iPA = kA
i∂iK − λA , (2.24)

which, on account of eq. (2.19) is equivalent to

iPA = −(k∗A
i∗∂i∗K − λ∗A) , (2.25)

so that, for A = a, ♯,

λa = −iPa , λ♯ = −iP♯ , (2.26)

where Pa and P♯ are real constants (see eq. (2.23)). Eq. (2.24) implies that the

momentum maps can be used as prepotentials from which the Killing vectors

can be derived:

kA i∗ = i∂i∗PA . (2.27)

– 7 –
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Observe that this equation is consistent with the triviality of the “Killing vectors”

Ka,K♯ and the constancy of the corresponding momentum maps eq. (2.23).

Using eqs. (2.17), (2.19) and (2.24) it can be shown that the momentum maps satisfy

the so-called equivariance condition:

£APB = 2ik[A
ik∗B]

j∗Gij∗ = −fAB
CPC . (2.28)

This equivariance condition implies that momentum maps can only be constant

and different from zero for Abelian factors. These constants will be associated after

gauging to the D - or Fayet-Iliopoulos terms.

2. If the Kähler-Hodge structure is preserved, any section Φ of Kähler weight (p, q)

must transform as9

δαΦ = −αA(LA −KA)Φ , (2.29)

where LA stands for the symplectic and Kähler-covariant Lie derivative w.r.t. KA

and is given by

LAΦ ≡

{

£A +

[

TA +
1

2
(pλA + qλ∗A)

]}

Φ , (2.30)

where the TA are the matrices that generate the subgroup of Gbos that acts on

the vectors. The TA are assumed to be in the representation in which the section

transforms and they satisfy the Lie algebra eq. (2.12). This means that the gravitino

ψµ transforms according to

δαψµ = −
i

2
αAℑmλAψµ . (2.31)

For A = a, ♯ we have just U(1)R transformations for each component Pa,P♯ different

from zero. For A = a the transformations are still global but the ℑmλAs are in

general functions of Z,Z∗. These cannot be compensated by U(1)R transformations.

The chiralinos χi transform according to

δαχ
i = αA

{

∂jkA
iχj +

i

2
ℑmλAχ

i

}

, (2.32)

and the transformations of the gauginos will be discussed after we discuss the

transformations of the vector fields.

3. Let us now consider the invariance of the superpotential W . We can require,

equivalently, that the section L be invariant up to Kähler transformations. A

Kähler-weight (p, q) section Φ will be invariant up to Kähler transformations if10

LaΦ = 0 , ⇒ £aΦ = −

[

Ta +
1

2
(pλa + qλ∗a)

]

Φ . (2.33)

9We do not write explicitly any spacetime, target space etc. indices.
10This condition only makes sense for transformations Ka that really act on the scalars.
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Therefore, we must require for all A = a

KaL = −iℑmλaL , ⇒ δαL = −iαaℑmλaL , (2.34)

but we cannot extend straightforwardly the same expression to all A since, as dis-

cussed at the beginning of this section, the corresponding transformations (constant

phase multiplications) are only symmetries when L = 0 or when they are associated

to transformations of the scalars and this is, by definition, not the case when A = a, ♯.

We, therefore, write

δαL = −iαAℑmλAL , (2.35)

imposing at the same time the constraint11

(αaℑmλa + α♯ℑmλ♯)L = (αaPa + α♯P♯)L = 0 . (2.36)

4. The kinetic term for the vector fields AΛ in the action will be invariant12 if the

effect of a reparametrization on the kinetic matrix fΛΣ is equivalent to a rotation

on its indices that can be compensated by a rotation of the vectors, or a constant

Peccei-Quinn-type shift i.e.

δαfΛΣ ≡ −αa£afΛΣ = αa[Ta ΛΣ − 2Ta (Λ
ΩfΣ)Ω] , (2.37)

δαA
Λ = αaTa Σ

ΛAΣ , (2.38)

where the shift generator is symmetric TaΛΣ = TaΣΛ to preserve the symmetry of

the kinetic matrix.

Observe that for a = a, £afΛΣ = 0, and, for consistency, we must have Ta (Λ
ΩfΣ)Ω = 0,

i.e. the transformations Ta are those that preserve the kinetic matrix. This is why

we call the group generated by Ta the invariance group GV of the complex vector

kinetic matrix.

The iteration of two of these infinitesimal transformations indicates that they can

be described by the 2nV × 2nV matrices13

Ta ≡







Ta Λ
Σ 0

TaΛΣ Ta
Λ

Σ






, Ta

Λ
Σ ≡ −TaΣ

Λ , (2.39)

satisfying the Lie algebra

[Ta, Tb] = −fab
cTc . (2.40)

11This constraint should be understood as a way to consider the cases L = 0 and L 6= 0 simultaneously:

when L 6= 0 the symmetry transformations must satisfy (αaPa + α♯P♯) = 0 and they are unrestricted

when L = 0.
12It is at this point that the restriction to perturbative symmetries (symmetries of the action) is made.
13Observe that this group is the semidirect product of the group that rotates the vectors, generated by

the matrices Ta Σ
Λ and the Abelian group of shifts generated by the matrices Ta ΛΣ. Evidently, some of

these matrices identically vanish. This is the price we have to pay to use the same indices a, b, c, . . . for the

generators of both groups.
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As we have discussed some of the transformations generated by the Ka may only

act on the scalars and not on the vectors, for instance, because the kinetic matrix

does not depend on the relevant scalars. We assume that the corresponding subset

of 2nV × 2nV matrices Ta are identically zero. On the other hand, we can formally

add to these matrices another identically vanishing 2nV × 2nV matrix T♯ so we have

a full set of 2nV × 2nV matrices TA satisfying the Lie algebra of G, eq. (2.12).

Combining all these results we conclude that the gauginos transform according to

δαλ
Σ = −αA

[

TA Ω
ΣλΩ +

i

2
ℑmλAλ

Σ

]

. (2.41)

At this point there is no restriction on the group G nor on the nV × nV matrices

TA Λ
Σ, although one can already see that the lower-triangular 2nV × 2nV matrices TA are

generators of the symplectic group.

2.3 Electric gaugings of perturbative symmetries

We are now going to gauge the symmetries described in the previous subsection using as

gauge fields the electric 1-form potentials AΛ. This requires the introduction of the (elec-

tric) embedding tensor ϑΛ
A to indicate which global symmetry is gauged by which gauge

field AΛ and, equivalently, to identify the parameters of global symmetries αA that are

going to be promoted to local parameters with the gauge parameters ΛΣ(x) of the 1-forms:

αA(x) ≡ ΛΣ(x)ϑΣ
A . (2.42)

We will write now the constraint eq. (2.36) in the form14

(ϑΣ
aPa + ϑΣ

♯P♯)L = 0 . (2.43)

Taking into account eq. (2.18) and the definition eq. (2.42), the gauge transformations

of the complex scalars will be

δZi = ΛΣϑΣ
AkA

i . (2.44)

The embedding tensor cannot be completely arbitrary. To start with, it is clear that

it has to be invariant under gauge transformations, which we denote by δ:

δϑΛ
A = −ΛΣQΣΛ

A , QΣΛ
A ≡ ϑΣ

BTB Λ
ΩϑΩ

A − ϑΣ
BϑΛ

CfBC
A . (2.45)

Then, the embedding tensor has to satisfy the quadratic constraint

QΣΛ
A = 0 . (2.46)

The gauge fields AΛ effectively couple to the generators

XΣΩ
Γ ≡ ϑΣ

ATAΩ
Γ , XΣΩΓ ≡ ϑΣ

ATA ΩΓ , XΣ ≡ ϑΣ
ATA . (2.47)

14Again, this constraint and other constraints of the same kind that will follow, should be understood

as a way to consider the cases L = 0 and L 6= 0 simultaneously: when L 6= 0 the embedding tensor must

satisfy (ϑΣ
aPa + ϑΣ

♯P♯) = 0 and it is unrestricted when L = 0.
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From the definition of the quadratic constraint eq. (2.46)

X(ΛΣ)
ΩϑΩ

A = 0 , (2.48)

which, for this purely electric gauging case implies

X(ΛΣ)
Ω = 0 , (2.49)

and no need to intoduce 2-form potentials. From the commutator of the matrices TA and

using the quadratic constraint we find the commutator of X generators

[XΛ,XΣ] = −XΛΣ
ΩXΩ , (2.50)

from which we can derive the analogue of the Jacobi identities.

We are now ready to gauge the theory. We will not attempt to give the full super-

symmetric Lagrangian and supersymmetry transformation rules, but only those elements

that allow its construction to lowest order in fermions (that is we consider supersymmetry

transformations acting on fermions up to first order fermion terms and supersymmetry

transformations acting on bosons up to second order fermions terms).

First, we have to replace the partial derivatives of the scalars in their kinetic term by

the covariant derivatives

DZi ≡ dZi +AΛϑΛ
AkA

i , (2.51)

where the gauge potentials transform according to

δAΣ = −DΛΣ ≡ −
(

dΛΣ +XΛΩ
ΣAΛΛΩ

)

. (2.52)

We also replace in the action the vector field strengths by the gauge-covariant field strengths

FΣ = dAΣ +
1

2
XΛΩ

ΣAΛ ∧AΩ . (2.53)

Observe that we have not introduced a coupling constant g as it is standard in the

literature since the embedding tensor already plays the role of a coupling constant and

even of different coupling constants if we are dealing with products of groups. Observe also

that ϑ♯
A does not appear in any of these expressions because K♯ = T♯ = 0.

We have to replace the (Kähler- and Lorentz-) covariant derivatives D of the spinors

in their kinetic terms by the gauge-covariant derivatives D:

Dµψν =

{

Dµ −
i

2
AΛ

µϑΛ
APA

}

ψν , (2.54)

Dχi = Dχi + Γjk
i
DZjχk −AΛϑΛ

A∂jkA
iχj +

i

2
AΛϑΛ

APAχ
i , (2.55)

DλΣ =

{

D −
i

2
AΛϑΛ

APA

}

λΣ −XΛΩ
ΣAΛλΩ . (2.56)

When L = 0 the components ϑΛ
♯ and ϑΛ

a occur in all these covariant derivatives.

When L 6= 0 the embedding tensor ϑΛ
♯ does not appear (and ϑΛ

a only appears in the
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last term of DλΣ). In the case L 6= 0 the gauging of the U(1)R symmetry requires U(1)R
to be identified with a U(1) subgroup acting on the scalars. Thus the embedding tensor

component associated to a U(1)R gauging is contained in ϑΛ
a.

The supersymmetry transformations of the bosonic fields do not change with the gaug-

ing, but those of the fermions do by the above replacement of (Kähler- and Lorentz-) co-

variant derivatives by gauge-covariant derivatives. Further in the gaugino supersymmetry

transformation the field strength is given by eq. (2.53) and there appears a new fermion

shift term DΣ. To first order in fermions, we have

δǫψµ = Dµǫ+ iLγµǫ
∗ , (2.57)

δǫλ
Σ =

1

2

[

6FΣ+ + iDΣ
]

ǫ , (2.58)

δǫχ
i = i 6DZiǫ∗ + 2Gij∗Dj∗L

∗ǫ , (2.59)

where 6FΣ+ =γµγνFΣ+
µν in which FΣ+ = 1

2

(

FΣ+i ⋆ FΣ
)

is the selfdual field strength, and

DΛ ≡ −ℑm fΛΣϑΣ
APA , (2.60)

where we use the notation

ℑm fΛΣ ≡ (ℑm f)−1|ΛΣ . (2.61)

The new term DΛ leads to corrections of the scalar potential of the ungauged theory Vu,

given in eq. (2.3), which now takes the form

Veg = Vu −DΛϑΛ
APA = Vu +

1

2
ℑm fΛΣϑΛ

AϑΣ
BPAPB . (2.62)

The action for the bosonic fields of the N = 1, d = 4 gauged supergravity of the kind

considered here is obtained by replacing the partial derivatives and field strengths by gauge-

covariant derivatives and field strengths, replacing the potential Vu by Veg above and by

adding a Chern-Simons term [29, 30] which is necessary to make the action gauge invariant

Seg =

∫

{

⋆R− 2Gij∗DZ
i ∧ ⋆DZ∗ j∗ − 2ℑmfΛΣF

Λ ∧ ⋆FΣ + 2ℜefΛΣF
Λ ∧ FΣ

− ⋆ Veg −
4

3
XΛΣΩA

Λ ∧AΣ ∧ [dAΩ +
3

8
XΓ∆

ΩAΓ ∧A∆]

}

. (2.63)

Gauge-invariance can be achieved only if

X(ΛΣΩ) = 0 , (2.64)

which is a constraint that also follows from supersymmetry.

3 Electrically and magnetically gauged N = 1, d = 4 supergravity

In this section we will discuss the most general gaugings of N = 1, d = 4 supergravity

by using as gauge group any subgroup of G = Giso ×GV × U(1)R that can be embedded

into Sp(2nV,R).
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From the purely bosonic point of view it would suffice to use the results of refs. [8, 15]

taking into account the particular structure of the global symmetry group of N = 1, d = 4

supergravity. This involves the introduction of new p-form fields p = 2, 3, 4 which, together

with the electric and magnetic (to be defined) 1-forms of the theory, combined into AM ,

constitute the standard 4-dimensional tensor hierarchy, reviewed in appendices B and C.

Its field content is

{AM , BA, CA
M ,DAB ,DE

NP ,DNPQ} .

At the level of the action, it is not necessary to introduce all these fields, though. It is

enough to introduce the magnetic 1-forms AΛ and 2-forms BA.

This procedure, however, must be compatible with N = 1, d = 4 supersymmetry.

A supersymmetrization of the tensor hierarchy and the action is necessary. The super-

symmetrization of the tensor hierarchy is a first step towards the construction of a fully

supersymmetric action with electric and magnetic gaugings and this is going to be our goal

in this section.

Thus, we are going to repeat the construction of the 4-dimensional tensor hierarchy

checking at each step its consistency withN = 1, d = 4 supersymmetry: for each new p-form

field we will construct a supersymmetry transformation and we will check the closure of

the local N = 1, d = 4 supersymmetry algebra on it. The commutator of two N = 1, d = 4

local supersymmetry transformations acting on bosonic p-form fields is expected to have

the general form

[δη , δǫ] = δg.c.t. + δgauge + duality relations , (3.1)

where δg.c.t. is a general coordinate transformation and δgauge is a gauge transformation that

should coincide with the one predicted by the bosonic tensor hierarchy purely on the basis

of gauge-invariance arguments. We also expect in general additional terms proportional to

duality relations between the new fields and the original fields of the ungauged N = 1, d = 4

supergravity. These duality relations project the tensor hierarchy onto the physical theory

reducing the number of independent fields.

Contrary to that expectation, we are going to see that, at least for some fields, it is

possible to construct supersymmetry transformations such that the local N = 1, d = 4

supersymmetry algebra closes without the use of any duality relation, i.e.

[δη , δǫ] = δg.c.t. + δgauge . (3.2)

To make this possible we will have to introduce the additional p-form fields of the tensor

hierarchy in supermultiplets constructing, as a matter of fact, a supersymmetric tensor

hierarchy. Now, to project the supersymmetric tensor hierarchy onto the physical theory

we will use duality relations both for the bosons and fermions.

We have succeeded in supersymmetrizing in this way the hierarchy up to 2-forms (which

requires the introduction of linear multiplets) but these results strongly indicate that the

same should be possible for all p-forms in the tensor hierarchy.

Studying the closure of the local N = 1, d = 4 supersymmetry algebra we are going to

see that it is necessary to add more bosonic p-form fields to the standard tensor hierarchy.
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The main reason for this is the existence of the constraint eq. (2.43) which will be gener-

alized to the electric-magnetic case in eq. (3.30). This constraint restricts simultaneously

the terms Pa,P♯ and the symmetries that can be gauged and reflects the breaking of the

U(1)R symmetry by the presence of a non-vanishing superpotential L.

The breaking of this symmetry will manifest itself in the existence of a new Stückelberg

shift of the 2-forms Ba, B♯

δBa ∼ PaΛ , δB♯ ∼ P♯Λ , (3.3)

where Λ is a 2-form that appears whenever L 6= 0. We can only find this shift by studying

the closure of the local supersymmetry algebra. Therefore, it is necessary to simultaneously

construct the tensor hierarchy and study its supersymmetrization.

To construct the respective gauge-covariant 3-form field strengths Ha, H♯ the existence

of one new 3-form C is required. We will find consistent supersymmetry transformations for

the needed 3-form C (as well as for yet another 3-form C ′ that is dual to the superpotential).

In order to have gauge-covariant 4-form field strengths Ga
M and G♯

M we need to introduce

a set of 4-forms DM . The extended hierarchy of N = 1, d = 4 supergravity will, thus, have

the total bosonic field content

{AM , BA, CA
M , C,C ′,DAB ,DE

NP ,DNPQ,DM} .

We start by reviewing the non-perturbative symmetries of the ungauged theory.

3.1 Non-perturbative symmetries of the ungauged theory

The new, non-perturbative symmetries to be considered are symmetries of the “extended”

equations of motion of the ungauged theory which are the standard equations of motion

plus the Bianchi identities of the vector field strengths:

dFΛ = 0 . (3.4)

The Maxwell equations that one obtains from the action eq. (2.2) can be written as Bianchi

identities for the 2-forms GΛ

dGΛ = 0 , GΛ
+ ≡ fΛΣ(Z)FΣ + . (3.5)

This set of extended equations of motion (Maxwell equations plus Bianchi identities)

is invariant under general linear transformations

(

FΛ

GΛ

)′

=

(

AΣ
Λ BΣΛ

CΣΛ DΣ
Λ

)(

FΣ

GΣ

)

. (3.6)

However, consistency with the definition of GΛ eq. (3.5) requires that the kinetic matrix

transforms at the same time as

f ′ = (C +Df)(A+Bf)−1 . (3.7)
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Then f ′ will be symmetric if

ATC − CTA = 0 , BTD −DTB = 0 , ATD − CTB = ξInV ×nV
, (3.8)

where ξ is a constant whose value is found to be ξ = 1 by the requirement of invariance of

the Einstein equations.

These conditions can be reexpressed in a better form after introducing some notation.

We define the contravariant tensor of 2-forms GM , the symplectic metric ΩMN and its

inverse ΩMN which we will use to, respectively, lower and raise indices

GM ≡

(

FΛ

GΛ

)

, ΩMN =

(

0 InV ×nV

−InV ×nV
0

)

, ΩMNΩNP = −δM
P . (3.9)

Then, the Maxwell equations and Bianchi identities are formally invariant under the trans-

formations

G′M ≡MN
MGN , M = (MN

M ) =

(

A B

C D

)

, (3.10)

satisfying

MT ΩM = Ω . (3.11)

i.e. M ∈ Sp(2nV ,R) [20]. Infinitesimally15

MN
M ∼ I2nV ×2nV

+ αATA N
M = αA







TAΣ
Λ TA

ΣΛ

TAΣΛ TA
Σ

Λ






, (3.12)

and the condition M ∈ Sp(2nV ,R) reads

TA [MN ] ≡ TA [M
P ΩN ]P = 0 . (3.13)

These transformations change the kinetic matrix and will only be symmetries of all the

extended equations of motion if they can be compensated by reparametrizations, i.e. fΛΣ

has to satisfy

αAkA
i∂ifΛΣ = αA

{

−TA ΛΣ + 2TA (Λ
ΩfΣ)Ω − TA

ΩΓfΩΛfΓΣ

}

. (3.14)

The subalgebra of matrices that generate symmetries of the action (perturbative sym-

metries) are those with TA
ΣΛ = 0, i.e. the lower-triangular matrices of eq. (2.39).

Observe that the transformations acting on the vectors are constrained to belong to

Sp(2nV ,R). That this is a constraint follows from the fact that the global symmetry group

G is in general not a subgroup of Sp(2nV ,R). We can thus only gauge those subgroups of

G that can be embedded in Sp(2nV ,R).

15We include identically vanishing generators associated to U(1)R etc. On the other hand, it is clear that

the index A refers now to more symmetries than in the perturbative case.
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The transformation rule of the kinetic matrix fΛΣ ≡ RΛΣ + iIΛΣ eq. (3.7) can be

alternatively expressed using the Sp(2nV ,R) matrix

(

MMN
)

≡







IΛΣ IΛΩRΩΣ

RΛΩI
ΩΣ IΛΣ +RΛΩI

ΩΓRΓΣ






, IΛΩIΩΣ = δΛΣ , (3.15)

which transforms linearly

M′ = MMMT . (3.16)

3.2 General gaugings of N = 1, d = 4 supergravity

We now want to consider the most general gauging of N = 1, d = 4 supergravity, using

perturbative and non-perturbative global symmetries and using electric and magnetic vec-

tors, to be introduced next. In the ungauged theory we can introduce nV 1-form potentials

AΛ and their field strengths FΛ = dAΛ. The Maxwell equations can be replaced by the

first-order duality relation

GΛ = FΛ , (3.17)

since now the Bianchi identity dFΛ = 0 implies the standard Maxwell equation dGΛ = 0.

The magnetic vectors AΛ will be introduced in the theory as auxiliary fields and we will

study them from the supersymmetry point of view later on. The electric AΛ and magnetic

AΛ vectors will be combined into a symplectic vector AM

AM ≡

(

AΛ

AΛ

)

, AM ≡ ΩMNA
N = (AΛ ,−A

Λ) , AM = ANΩNM , (3.18)

and used as the gauge fields of the symmetries described in the previous subsection.

In order to use all the 1-forms AM as gauge fields we need to add a magnetic component

to the embedding tensor, which becomes a covariant symplectic vector

ϑM
A ≡ (ϑΛA , ϑΛ

A ) , (3.19)

where the index A ranges over all the generators of G = Gbos × U(1)R, so we have now

αA(x) ≡ ΛM (x)ϑM
A , (3.20)

and the gauge transformations of the complex scalars, for instance, take the form

δZi = ΛMϑM
AkA

i . (3.21)

The embedding tensor describes the embedding of the gauge group into the global

symmetry group G. The part of the global symmetry group that cannot be embedded into

Sp(2nV,R) is irrelevant for the purpose of gauging. There is thus no loss in generality

to replace the global symmetry group by Sp(2nV,R). In this sense the embedding tensor

provides an embedding of the gauge group into Sp(2nV,R). Besides the embedding into

Sp(2nV ,R) there are further constraints that decrease the rank of the group that we can

actually gauge.
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For instance, we must impose the constraint

QAB ≡
1

4
ϑ[A|Mϑ|B]

M = 0 , ⇒ ϑAMϑM
B = 0 , (3.22)

which guarantees that the electric and magnetic gaugings are mutually local [8] and we

can go to a theory with only purely electric gaugings by a symplectic transformation.

The embedding tensor must satisfy further conditions. We define the matrices

XMN
P ≡ ϑM

ATA N
P , (3.23)

which satisfy

XMNP = XMPN , (3.24)

on account of eq. (3.13). Observe that the components ϑM
♯ are not present in the XMNP

tensors. Further, we impose the quadratic constraint16

QNM
A ≡ ϑN

ATA M
PϑP

A − ϑN
AϑM

BfAB
A = 0 , (3.25)

to ensure invariance of ϑM
A and the representation constraint [8]

LMNP ≡ X(MNP ) = X(MN
QΩP )Q = 0 . (3.26)

This constraint is required by gauge invariance and supersymmetry.17 It implies eq. (2.64)

and also

X(MN)P = −
1

2
XPMN ⇒ X(MN)

P = ZPATAMN , (3.27)

where we have defined

ZPA ≡ −
1

2
ΩNPϑN

A . (3.28)

This definition and that of the other projectors that appear in the 4-dimensional hierarchy

are collected in appendix B. The tensor ZPA will be used to project in directions orthogonal

to the embedding tensor since, due to the first quadratic constraint eq. (3.22),

ZMAϑM
B = 0 . (3.29)

Finally, it should be clear that the constraint eq. (2.43) on the triple product of em-

bedding tensor, momentum maps and superpotential should be generalized to

(ϑM
aPa + ϑM

♯P♯)L = 0 . (3.30)

Regarding the gauging of the U(1)R symmetry group we have the following possibilities.

If L = 0 then the gauging shows up in the covariant derivatives of the fermions through

terms containing P♯. The covariant derivatives acting on the scalars and vectors do not

‘see’ this gauging because K♯ = T♯ = 0. If we have a non-vanishing superpotential then it

16Observe that ϑM
♯ does not occur in QNM

A either.
17In ref. [21] it has been shown how this constraint gets modified in the presence of anomalies and the

modifications can cancel exactly the lack of gauge invariance of the classical action.
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must be that ϑM
aPa + ϑM

♯P♯ = 0 and in order to gauge the U(1)R symmetry it must be

identified with a U(1) subgroup of Gbos.

We define gauge-covariant derivatives of objects transforming according to δφ =

ΛM δMφ by

Dφ = dφ+AMδMφ . (3.31)

The gauge fields transform according to

δAM = −DΛM + ∆AM = −
(

dΛM +XNP
MANΛP

)

+ ∆AM , (3.32)

where ∆AM is a piece that we can add to this gauge transformation if it satisfies

ϑM
A∆AM = 0 . (3.33)

The covariant derivatives of the scalars, gravitino and chiralinos read

DZi = dZi +AMϑM
AkA

i , (3.34)

Dµψν =

{

Dµ −
i

2
AM

µϑM
APA

}

ψν , (3.35)

Dχi = Dχi + Γjk
i
DZjχk −AMϑM

A∂jka
iχj +

i

2
AMϑM

APAχ
i . (3.36)

Observe that ∆AM drops automatically from the gauge transformations of these ex-

pressions because AM always comes projected by ϑM
A.

It is clear that we need to introduce auxiliary “magnetic gauginos” λΛ in order to

construct a symplectic vector of gauginos λM whose covariant derivative is

DλM =

{

D −
i

2
ANϑN

APA

}

λM −XNP
MANλP . (3.37)

The magnetic gauginos are the supersymmetric partners of the magnetic 1-forms. We will

discuss their supersymmetry transformation rules later.

So far, to introduce the general 4-dimensional embedding-tensor formalism we have

introduced magnetic 1-forms AΛ and gauginos λΛ. As discussed at the beginning of this

section, we have to find supersymmetry transformations for them and check the closure of

the local N = 1, d = 4 supersymmetry algebra.

3.3 The supersymmetric hierarchy

Before we deal with the supersymmetry transformations of the magnetic 1-forms that we

have introduced, we take one step back and study the closure of the local N = 1, d = 4

supersymmetry algebra on the 0-forms.

3.3.1 The scalars Zi

Their supersymmetry transformations are given by eq. (2.11), which we rewrite here for

convenience:

δǫZ
i =

1

4
χ̄iǫ . (3.38)
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At leading order in fermions,

δηδǫZ
i =

1

4
(δηχi)ǫ , (3.39)

and all we need is the supersymmetry transformation for χi. This is given in eq. (2.59),

which we also rewrite here

δηχ
i = i 6DZiη∗ + 2Gij∗Dj∗L

∗η , (3.40)

where we have to take into account that the covariant derivative DZi is now given by

eq. (3.34). We get

[δη , δǫ]Z
i = δg.c.t.Z

i + δhZ
i , (3.41)

where δg.c.t.Z
i is a g.c.t. with infinitesimal parameter ξµ

δg.c.t.Z
i = £ξZ

i = +ξµ∂µZ
i , (3.42)

ξµ ≡
i

4
(ǭγµη∗ − η̄γµǫ∗) , (3.43)

and where δhZ
i is the gauge transformation eq. (3.21) with gauge parameter ΛM

δZi = ΛMϑM
AkA

i , (3.44)

ΛM ≡ ξµAM
µ . (3.45)

This is just a small generalization of the standard result in which electric and magnetic

gauge parameters appear. As expected, no duality relations are required to close the local

supersymmetry algebra on the Zi.

3.3.2 The 1-form fields AM

As we have mentioned before, to define supersymmetry transformations for the magnetic

vectors AΛ it is convenient to introduce simultaneously magnetic gauginos18 λΛ. This

is equivalent to introducing nV auxiliary vector supermultiplets. Symplectic covariance

suggests that we can write the following supersymmetry transformation rules for the electric

and magnetic 1-forms and gauginos:

δǫA
M

µ = −
i

8
ǭ∗γµλ

M + c.c. , (3.46)

δǫλ
M =

1

2

[

6FM+ + iDM
]

ǫ , (3.47)

where FM is the gauge-covariant 2-form field strength of AM , to be defined shortly, and

where we have defined the symplectic vector

DM ≡

(

DΛ

DΛ

)

≡

(

DΛ

fΛΣD
Σ

)

, (3.48)

18Magnetic gauginos have also been introduced in ref. [31].
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where now, the electric DΛ has been redefined, with respect to the purely electric gauging

case, to include a term with the magnetic component of the embedding tensor ϑΛA:

DΛ = −ℑmfΛΣ (ϑΣ
A + f∗ΣΩϑ

ΩA)PA . (3.49)

Although at this point we do not need it, it is important to observe that there is a

duality relation between the magnetic gauginos and the electric ones

λΛ = fΛΣλ
Σ . (3.50)

The gaugino duality relation is local and takes the same form as the duality relation between

the magnetic and the electric vector field strengths:

FΛ
+ = fΛΣF

Σ + , (3.51)

which is obtained from the duality between electric and magnetic vectors FΛ = GΛ,

combined with eq. (3.5). These duality relations relate the supersymmetry transformation

δǫλ
Λ to δǫλΛ.

Now we can check the closure of the local supersymmetry algebra on AM . It is,

however, convenient to know beforehand the form of the gauge transformations that we

should expect on the right hand side of the commutator. The gauge transformations of

AM are given in eq. (3.32) up to a term ∆AM which is determined in the construction

of the gauge-covariant field strength FM . This term is also needed to have well-defined

supersymmetry transformations for all the gauginos.

As shown in ref. [8], this requires the introduction of a set of 2-forms BA in FM , which

takes the form

FM = dAM +
1

2
X[NP ]

MAN ∧AP + ZMABA , (3.52)

and is gauge-covariant under the transformations19

δhA
M = −DΛM − ZMAΛA , (3.53)

δhBA = DΛA + 2TA NP

[

ΛNFP +
1

2
AN ∧ δhA

P

]

+ ∆BA , ZMA∆BA = 0 . (3.54)

Let us now compute the commutator of two supersymmetry transformations on AM .

To leading order in fermions, eq. (3.46) gives

δηδǫA
M

µ = −
i

8
ǭ∗γµδηλ

M + c.c. (3.55)

Using eq. (3.47) with the parameter η, we find

[δη , δǫ]A
M

µ = ξνFM
νµ + ZMAPAξµ , (3.56)

where ξµ is given by eq. (3.43) and we have used

ℑmDM = 2ZMAPA , (3.57)

19The label h in the gauge transformations indicates that these are the gauge transformations as predicted

by the tensor hierarchy.
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which follows from the definitions eqs. (3.48), (3.49) and (B.1). We always expect a general

coordinate transformation on the right hand side of the form

δg.c.t.A
M

µ = £ξA
M

µ = ξν∂νA
M

µ + ∂µξ
νAM

ν . (3.58)

Using the explicit form of the field strength FM eq. (3.52) we can rewrite it as

δg.c.t.A
M

µ = ξνFM
νµ + Dµ(AM

νξ
ν) + ZMA

[

BAµνξ
ν − TA NPA

N
µA

P
νξ

ν
]

. (3.59)

Using this expression in the commutator and the definition eq. (3.45) of the gauge

parameter ΛM , we arrive at

[δη , δǫ]A
M = δg.c.t.A

M + δhA
M , (3.60)

where, in complete agreement with the tensor hierarchy, δhA
M is the gauge transformation

in eq. (3.53) with the 1-form gauge parameter ΛA given by

ΛA ≡ −TA MNA
NΛM + bA − PAξ , (3.61)

bA µ ≡ BA µνξ
ν . (3.62)

Observe that no duality relation was needed to close the local supersymmetry alge-

bra on the magnetic vector fields. This result is a consequence of using fully independent

magnetic gauginos as the supersymmetric partners of the magnetic vector fields, i.e. trans-

forming as δǫλΣ ∼6 FΣ
+ instead of δǫλΣ ∼6GΣ

+. In the later case we would have gotten

additional GΣ − FΣ terms to be cancelled by using the duality relation.

3.3.3 The 2-form fields BA

In order to have a gauge-covariant field strength FM for the 1-forms we have been forced

to introduce a set of 2-forms BA and now we want to study the consistency of this addition

to the theory from the point of view of supersymmetry and gauge invariance. We will first

study the closure of the supersymmetry algebra on the 2-forms BA without introducing

its supersymmetric partners and, later on, we will introduce the 2-forms as components of

linear supermultiplets. In the first case, the local N = 1, d = 4 supersymmetry algebra will

close up to the use of duality relations while in the second case it will close exactly.

It is useful to know beforehand what to expect on the right hand side of the commutator

of two supersymmetry transformations acting on the 2-forms BA. The gauge transforma-

tions of the 2-forms are given in eq. (3.54) up to a term ∆BA which is constraint to satisfy

ZMA∆BA = 0. In ref. ([15]) it was found that, in general,

∆BA = −YAM
CΛC

M , (3.63)

for some 2-form parameters ΛC
M . YAM

C is the projector given in eq. (B.2) and is an-

nihilated by ZNA by virtue of the quadratic constraint eq. (2.46) (see eq. (B.6)), as re-

quired by the gauge-covariance of FM . In generic 4-dimensional theories YAM
C is the only

tensor that is annihilated by ZNA. At this point we have to remind ourselves that in

N = 1, d = 4 supergravity there is another constraint, given in eq. (3.30), that may lead to
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additional terms in the gauge transformation of the 2-forms since eq. (3.30) can be written

as ZMA(δA
aPa + δA

♯P♯)L = 0. To see if there are any such additional terms in the gauge

transformations of the 2-forms we need to compute the commutator of two supersymmetry

transformations on BA.

In any case, the generic tensor hierarchy prediction is that, with the gauge transfor-

mations eq. (C.2), which we rewrite here

δhBA = DΛA + 2TA NP

[

ΛNFP +
1

2
AN ∧ δhA

P

]

− YAM
CΛC

M , (3.64)

the gauge-covariant field strength of BA is as given in eq. (C.8)

HA = DBA + TA RSA
R ∧

[

dAS +
1

3
XNP

SAN ∧AP

]

+ YAM
CCC

M , (3.65)

where CC
M is a 3-form whose gauge transformations are determined to be

δhCC
M = DΛC

M −FM ∧ΛC − δhA
M ∧BC −

1

3
TC NPA

M ∧AN ∧ δhA
P +ΛMHC +∆CC

M ,

(3.66)

where

YAM
C∆CC

M = 0 . (3.67)

We will next see that eq. (3.30) leads to additional terms in the 2-form gauge trans-

formation. Inspired by the results of ref. [27], we found that, for the 2-forms BA, the

supersymmetry transformation is given by

δǫBAµν =
1

4
[∂iPAǭγµνχ

i + c.c.] +
i

2
[PAǭ

∗γ[µψν] − c.c.] + 2TAMNA
M

[µδǫA
N

ν] . (3.68)

The commutator of two of these supersymmetry transformations closes up to a duality

relation to be described later on, a general coordinate transformation, and a gauge trans-

formation of the form

δ′hBA = δhBA − (δA
aPa + δA

♯P♯)Λ , (3.69)

where δhBA is the standard hierarchy gauge transformation eq. (C.2) and where the 2-form

parameters Λ and ΛC
M are given by

ΛC
M ≡ −ΛMBC − cC

M −
1

3
TCQP ΛPAM ∧AQ , (3.70)

Λ ≡ −c+ 2ℜe(φL) , (3.71)

φµν ≡ ǭ∗γµνη
∗ = −η̄∗γµνǫ

∗ , (3.72)

cC
M

µν ≡ CC
M

µνρξ
ρ , (3.73)

cµν ≡ Cµνρξ
ρ . (3.74)

The parameters ΛM and ΛA are, again, given by eqs. (3.45) and (3.61), respectively. We

have introduced the anticipated 3-form C with the gauge transformation

δ′hC = −dΛ , (3.75)
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to take care of the Stückelberg shift parameter Λ. Strictly speaking we only need to

introduce C when L 6= 0 in which case, according to the constraint eq. (3.30), (ϑM
aPa +

ϑM
♯P♯) = 0. We can express this as a “constraint”

(ϑM
aPa + ϑM

♯P♯)C = 0 , (3.76)

so

(ϑM
aPa + ϑM

♯P♯)Λ = 0 . (3.77)

This constraint ensures that ZMA∆BA = 0 so that FM remains gauge-covariant un-

der δ′hBA.

The success of closing the supersymmetry algebra on the 2-forms, BA, that is evaluating

the commutator of two supersymmetry transformations (3.68), and showing that it gives

rise to local symmetries acting on BA requires the use of the duality relation

H ′
A = −

1

2
⋆ jA , (3.78)

where

jA ≡ 2k∗A iDZ
i + c.c. , (3.79)

is the covariant Noether current 1-form and where the hierarchy gauge-covariant field

strength HA given in eq. (C.8) has been modified to:

H ′
A ≡ HA − (δA

aPa + δA
♯P♯)C . (3.80)

The modified field strength H ′
A transforms covariantly under the modified gauge transfor-

mations (3.69).

The right hand side of the duality relation (3.78) vanishes for A = a, ♯. For these

cases we expect to have currents bilinear in fermions which cannot appear at the order in

fermions we are working at.

The origin of the extra term in eq. (3.80) that is proportional to (δA
aPa + δA

♯P♯) can

be traced back to the fact that the identity

∂i∗PaDi∗L
∗ − PaL

∗ = 0 , (3.81)

which is crucial for closing the supersymmetry algebra for the case A = a (it leads to a

cancellation of terms coming from the supersymmetry variation of the first and second

terms of eq. (3.68)) cannot be extended to the cases A = a, ♯ in which we have introduced

fake (vanishing) Killing vectors.

The introduction of the 3-forms C and CA
M into the result for the commutator

[δη , δǫ]BAµν via the duality relation (3.78) was necessary in order to make the result gauge

invariant. Ultimately, this is only allowed if one can show that the supersymmetry algebra

can also be closed on the 3-forms C and CA
M . This will be shown to be the case later on.
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3.3.4 The supermultiplet of BA

We are now going to show that if we add to the tensor hierarchy full linear multiplets20

{BA µν , ϕA, ζA} where ϕA is a real scalar and ζA is a Weyl spinor, instead of just the 2-

forms BA, as in the preceding section, we can close the local N = 1, d = 4 supersymmetry

algebra on the 2-forms exactly without the use of the duality relation eq. (3.78).

We will construct the supersymmetry rules of the linear supermultiplet first for the

case A = a after which this result will be generalized to include also the cases A = a, ♯. The

above supersymmetry transformation rule eq. (3.68) suggests the fermionic duality rule

ζa = ∂iPaχ
i = ik∗a iχ

i , (3.82)

so we would have

δǫBaµν =
1

4
[ǭγµνζa + c.c.] +

i

2
[Paǭ

∗γ[µψν] − c.c.] + 2Ta MNA
M

[µδǫA
N

ν] . (3.83)

The supersymmetry transformation rule of ζa follows from the above duality rule:

δǫζa = ik∗a iδǫχ
i = −k∗a i 6DZ

iǫ∗ + 2∂iPaG
ij∗Dj∗L

∗ǫ . (3.84)

Using next the duality rule eq. (3.78) ja = 4ℜe(k∗
a iDZ

i) = −2 ⋆ Ha we find

δǫζa = −i

[

i

12
6Ha + ℑm(k∗a iDµZ

i)γµ

]

ǫ∗ + 2PaL
∗ǫ . (3.85)

To make contact with the standard linear multiplet supersymmetry transformations

we should be able to identify consistently

ℑm(k∗a iDZ
i) ≡ Dϕa , (3.86)

for some real scalar ϕa. The integrability condition of this equation can be obtained by

acting with D on both sides. Using on the l.h.s. the property

Dk∗a i = DZ∗j∗∇j∗k
∗
a i , (3.87)

and the Killing property, the integrability condition takes the form

− iFMϑM
bk∗[a|ik|b]

i = fab
cFMϑM

bϕc , (3.88)

which is solved by

− ik∗[a|ik|b]
i = fab

cϕc . (3.89)

Given that the Killing vectors can be derived from the Killing prepotential Pa which is

equivariant, it follows that

k∗[a|ik|b]
i =

i

2
£aPb = −

i

2
fab

cPc , (3.90)

20Similar supermultiplets have been introduced in electro-magnetically gauged globally supersymmetric

N = 2, d = 4 field theory [31].
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and we can finally identify

ℑm(k∗a iDZ
i) = −

1

2
DPa . (3.91)

The supersymmetry transformations of the linear multiplet {Baµν , ϕa, ζa} are given by

δǫζa = −i

[

1

12
6Ha+ 6Dϕa

]

ǫ∗ − 4ϕaL
∗ǫ , (3.92)

δǫBaµν =
1

4
[ǭγµνζa + c.c.] − i[ϕaǭ

∗γ[µψν] − c.c.] + 2Ta MNA
M

[µδǫA
N

ν] , (3.93)

δǫϕa = −
1

8
ζ̄aǫ+ c.c. . (3.94)

The duality relations needed to relate these fields to the fundamental fields of the

N = 1, d = 4 gauged supergravity are

ζa = ∂iPaχ
i , (3.95)

Ha = −
1

2
⋆ ja , (3.96)

ϕa = −
1

2
Pa . (3.97)

The supersymmetry algebra closes on all the fields of the linear multiplet without the

use of any duality relation.

Now that we know the supersymmetry transformation rules for A = a we will gener-

alize them to all values of A. The supersymmetry transformations of the linear multiplet

{BA µν , ϕA, ζA} are given by

δǫζA = −i

[

1

12
6H ′

A+ 6DϕA

]

ǫ∗ − 4δA
aϕaL

∗ǫ , (3.98)

δǫBAµν =
1

4
[ǭγµνζA + c.c.] − i[ϕAǭ

∗γ[µψν] − c.c.] + 2TA MNA
M

[µδǫA
N

ν] , (3.99)

δǫϕA = −
1

8
ζ̄Aǫ+ c.c. . (3.100)

The duality relations, eqs. (3.95) to (3.97), become

ζA = ∂iPAχ
i , (3.101)

H ′
A = −

1

2
⋆ jA , (3.102)

ϕA = −
1

2
PA . (3.103)

Observe that some terms on the right hand side are zero for A = a, ♯, at least to leading

order in fermions.

Now the gauge parameters that appear on the right hand side of the commutator

of two supersymmetry transformations are different from those we found in the previous

section and, therefore, do not match with those we found in the case of the 1-forms. To

relate the parameters of the supersymmetry algebra in the case with and without the linear

supermultiplets we also need to use the above duality relations. For instance, ΛA is given
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by eq. (3.61) with PA replaced by −2ϕA. This means that, in order to supersymmetrize

consistently the tensor hierarchy we also must replace PA by −2ϕA in the supersymmetry

transformation rules of the gauginos eq. (3.47) (i.e. in the definition of DM eqs. (3.48)

and (3.49)). There are furthermore also 3-forms contained in the transformation rule for

ζA. Thus, if we continue this program we need to find a way to close the algebra on all the

3-forms without using any duality relations.

However, we will not pursue here any further the supersymmetrization of the tensor hi-

erarchy for the higher-rank p-forms but we think that the above results strongly suggest that

an extension with additional fermionic and bosonic fields of the tensor hierarchy on which

the local supersymmetry algebra closes without the use of duality relations must exist. The

duality relations must project the supersymmetric tensor hierarchy on to the N = 1 super-

symmetric generalization of the (bosonic) action which will be given later in eq. (3.126).

As we have seen in the vector and 2-form cases, the duality relations among the addi-

tional fields (fermionic λΣ, ζ
A and bosonic ϕA) are local as opposed to those involving the

original bosonic fields (AΛ, BA), which are non-local and related via Hodge-duality.

3.3.5 The 3-form fields CA
M

We will be brief here because the construction of the field strength and the determination

of the gauge transformations of the 3-forms CA
M are similar to those of the other fields.

We first remark that, in order to make the standard hierarchy’s field strength GC
M

gauge-invariant under the new gauge transformations, we must modify it as follows:

G′
A

M ≡ GA
M + (δA

aPa + δA
♯P♯)D

M , (3.104)

where GA
M is given in eq. (C.9) and DM is a 4-form transforming as

δ′hD
M = DΣM +

(

FM −
1

2
ZMABA

)

∧ Λ , (3.105)

and where we must also modify the gauge transformation rules of the 3-forms CA
M to be

δ′hCA
M = δhCA

M − (δA
aPa + δA

♯P♯)DΣM . (3.106)

In order to prove this result we have made use of the constraint eq. (3.30) and also

of the fact, mentioned in section 2.2, that the directions A = a for which Pa 6= 0 must

necessarily be Abelian, so

YAM
A(δA

aPa + δA
♯P♯)L = 0 , (3.107)

etc.

Then, the supersymmetry transformations of the 3-forms CA
M are given by

δǫCA
M

µνρ = −
i

8

[

PAǭ
∗γµνρλ

M − c.c.
]

− 3BA [µν|δǫA
M

|ρ] − 2TA PQA
M

[µA
P

ν|δǫA
Q
|ρ] .

(3.108)

The local N = 1, d = 4 supersymmetry algebra closes on CA
M upon the use of a

duality relation to be discussed later. The gauge transformations of CA
M that appear on
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the right hand side are the ones described above with

ΛBC = dBC +B[B ∧ bC] + 2T[B|NP ΛPAN ∧BC] , (3.109)

ΛNPQ = dNPQ + 2Λ(PAN ∧ (FQ) − ZQ)CBC) −
1

4
XRS

(QΛPAN) ∧AR ∧AS , (3.110)

ΛE
NP = dE

NP − ΛNCE
P +

1

2
TE QRΛQAN ∧AR ∧AP , (3.111)

where dBCµνρ = DBCµνρσξ
σ, and similarly for dNPQ and dE

NP . The gauge transformation

parameters ΛM , Λa and Λa
M are, again, given by eqs. (3.45), (3.61) and (3.70), respectively.

In the closure of the local supersymmetry algebra we have made use of the

duality relation

G′
A

M = −
1

2
⋆ℜe(PAD

M) . (3.112)

According to the results of ref. [15], the duality relation has the general form

G′
A

M =
1

2
⋆

∂V

∂ϑM
A
. (3.113)

Comparing these two expressions and using the relation between the potential of the super-

gravity theory and the fermion shifts, we conclude that, after the general electric-magnetic

gauging the potential of N = 1, d = 4 supergravity is given by

Ve−mg = Vu −
1

2
ℜeDMϑM

APA = Vu +
1

2
MMNϑM

AϑN
APAPB , (3.114)

where M is the symplectic matrix defined in eq. (3.15). It satisfies

∂Ve−mg/∂ϑM
A = −ℜe(DMPA) . (3.115)

There may exist a supermultiplet containing the 3-forms CA
M such that the super-

symmetry algebra closes without the need to use a duality relation. We leave it to future

work to study its possible (non-)existence.

3.3.6 The 3-form C and the dual of the superpotential

We have seen that the consistency of the closure of the local supersymmetry algebra on

the 2-forms Ba and B♯ requires the existence of a 3-form field that we have denoted by C,

whose gauge transformation cancels the Stückelberg shift of those 2-forms.

An Ansatz for the supersymmetry transformation of C can be made by writing down

3-form spinor bilinears that have zero Kähler weight and that are consistent with the

chirality of the fermionic fields. Further, from eq. (3.71) it follows that there will be no

gauge potential terms needed in the Ansatz. We thus make the following Ansatz

δǫCµνρ = −3iηL ǭ∗γ[µνψ
∗
ρ] −

1

2
ηDiLǭ

∗γµνρχ
i + c.c. , (3.116)

where η is a constant to be found. It turns out that the local supersymmetry algebra

closes for two different reality conditions for η, which leads to the existence of two different

3-forms that we will call C and C ′.
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1. For η = −i the algebra closes into the gauge transformations required by the 2-forms

Ba and B♯ provided that the field strength G = dC vanishes. As discussed earlier

there may be non-vanishing contributions if we were to construct the supersymmetry

algebra at the quartic fermion order.

2. For η ∈ R the algebra closes into the following gauge transformation

δgaugeC
′ = −dΛ′ , (3.117)

where the 2-form Λ′ is given by

Λ′ = c′ − 2ηℑm(Lφ) , c′µν ≡ C ′
µνρξ

ρ , (3.118)

provided the field strength G′ = dC ′ satisfies the duality relation

G′ = ⋆η(−24|L|2 + 8Gij∗DiLDj∗L
∗) . (3.119)

Observe that the right hand side is nothing but the part of the scalar potential

eq. (3.114) that depends on the superpotential. Actually, if we rescale the superpoten-

tial by L → ηL, then we can rewrite the above duality relation in the standard fashion

G′ =
1

2
⋆
∂Ve−mg

∂η
, (3.120)

and, therefore, we can see the 3-form C ′ as the dual of the deformation parameter associated

to the superpotential, just as we can see the 3-forms CA
M as the duals of the deformation

parameters ϑM
A.

Observe that, had we chosen to work with a vanishing superpotential we would have

found the duality rule G′ = 0. This suggests a possible interpretation of the 3-form C to be

explored: that it may be related to another, as yet unknown, deformation of N = 1, d = 4

supergravity which has not been used. The full supersymmetric action is needed to confirm

this possibility or to find, perhaps, a term bilinear in fermions which is dual to C.

Finally, observe that neither of the 3-forms C,C ′ was predicted by the standard

tensor hierarchy. C, though, is predicted by the extension associated to the constraints

eqs. (3.30) and (3.107).

3.3.7 The 4-form fields DE
NP ,DAB ,D

NPQ,DM

In the previous sections we have introduced four 4-forms DE
NP ,DAB ,D

NPQ,DM in order

to close the local supersymmetry algebra and have fully gauge-covariant field strengths.

We thus expect that we can also find consistent supersymmetry transformations for all

these 4-forms.

For the three 4-forms DE
NP ,DAB ,D

NPQ there is a slight complication that has to

do with the existence of extra Stückelberg shift symmetries. There are two such shift

symmetries and in appendix C they correspond to the parameters Λ̃E
(NP ) and ΛBE

P .

The origin of these symmetries lies in the fact that the W tensors that appear in the field
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strengths of the 3-forms are not all independent. The symmetries result from the iden-

tities (B.16) and (B.17) together with the constraints LNPQ = QAB = QNM
A = 0. This

means that if we want to realize N = 1 supersymmetry on the 4-forms DE
NP ,DAB ,D

NPQ

the parameters Λ̃E
(NP ) and ΛBE

P will appear on the right hand side of commutators as

part of the local algebra.

Most of these features are already visible in the simpler case of the ungauged theory,21

i.e. for ϑM
A = 0 and even when the ungauged case has no symmetries that act on the

vectors, i.e. when all the matrices TA = 0. We will restrict ourselves to realizing the

supersymmetry algebra on the 4-forms for the ungauged theory with TA = 0 for all A for

simplicity. The 4-form supersymmetry transformations in this simple setting are given by

δǫDAB = −
i

2
⋆ P[A∂iPB]ǭχ

i + c.c.−B[A ∧ δǫBB] , (3.121)

δǫD
NPQ = 10A(N ∧ FP ∧ δǫA

Q) , (3.122)

δǫDE
NP = CE

P ∧ δǫA
N . (3.123)

δǫD
M = −

i

2
⋆ L∗ǭλM + c.c. +C ∧ δǫA

M . (3.124)

When ϑM
A = 0 and TA = 0 the only place where there still appears a Stückelberg shift

parameter is in the gauge transformation of DE
NP . From the commutators we find that

Λ̃E
(NP ) = −2Λ(NFP ) ∧BE . (3.125)

3.4 The gauge-invariant bosonic action

It turns out that in order to write an action for the bosonic fields of the theory with electric

and magnetic gaugings of perturbative and non-perturbative symmetries it is enough to

add to the fundamental (electric) fields just the magnetic 1-forms AΛ and the 2-forms BA.

The gauge-invariant action takes the form

Se−mg =

∫
{

⋆R− 2Gij∗DZ
i ∧ ⋆DZ∗ j∗ − 2ℑmfΛΣF

Λ ∧ ⋆FΣ + 2ℜefΛΣF
Λ ∧ FΣ

− ⋆ Ve−mg − 4ZΣABA∧

(

FΣ−
1

2
ZΣ

BBB

)

−
4

3
X[MN ]ΣA

M∧AN ∧
(

FΣ− ZΣBBB

)

−
2

3
X[MN ]

ΣAM ∧AN ∧

(

dAΣ −
1

4
X[PQ]ΣA

P ∧AQ

)}

. (3.126)

The scalar potential Ve−mg is given by eq. (3.114). Furthermore, the gauge transformations

that leave invariant the above action (δa) are those of the extended hierarchy (δ′h) except

for the 2-forms:

δaBA = δ′hBA − 2TA NP ΛN
(

FP −GP
)

. (3.127)

The action contains the 2-forms BA always contracted with ZMA so that we do not need

to worry about the different behavior of Ba and Ba, B♯ under gauge transformation due to

the extra constraint eq. (3.77).

21Note that the hierarchy remains non-trivial for ϑM
A = 0.
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A general variation of the above action gives

δS =

∫ {

δgµν δS

δgµν
+

(

δZi δS

δZi
+ c.c.

)

− δAM ∧ ⋆
δS

δAM
+ 2δBA ∧ ⋆

δS

δBA

}

, (3.128)

where the first variations with respect to the different fields are given by

− ⋆
δS

δgµν
= Gµν + 2Gij∗

[

DµZ
i
DνZ

∗ j∗ −
1

2
gµνDρZ

i
D

ρZ∗ j∗
]

−GM
(µ|

ρ ⋆ GM |ν)ρ +
1

2
gµνVe−mg , (3.129)

−
1

2

δS

δZi
= Gij∗D ⋆DZ∗ j∗ − ∂iGM

+ ∧GM+ − ⋆
1

2
∂iVe−mg , (3.130)

−
1

4
⋆
δS

δAM
= DGM −

1

4
ϑM

A ⋆ jA +
1

2
TA MNA

N ∧ ϑPA(FP −GP ) , (3.131)

⋆
δS

δBA
= ϑPA(FP −GP ) . (3.132)

The above equations are formally symplectic-covariant and, therefore, electric-

magnetic duality symmetric. Both the Maxwell equations and the “Bianchi identities”

have now sources to which they couple with a strength determined by the embedding

tensor’s electric and magnetic components.

It is expected to be possible to find a gauge-invariant action in which all the hierarchy’s

fields appear (as was done in [15]) if one assumes that none of the constraints on the embed-

ding tensor are satisfied. Then, the 3-forms CA
M and the 4-forms DE

NP ,DAB ,D
NPQ, DM

are introduced as Lagrange multipliers enforcing the constancy of the embedding tensor

and the algebraic constraints QNP
E = 0, QAB = 0, LNPQ = 0 and (ϑM

aPa+ϑM
♯P♯)L = 0,

respectively, but we will not study this possibility here.

It should be stressed that, even though the action eq. (3.126) contains 2nV vectors and

some number nB of 2-forms Ba it does not carry all those degrees of freedom. To make

manifest the actual number of degrees of freedom we briefly repeat here the arguments

of [8] regarding the gauge fixing of the action (3.126). First, we choose a basis of magnetic

vectors and generators such that the non-zero entries of ϑΛa arrange themselves into a

square invertible submatrix ϑIi. We split accordingly AΛµ = (AIµ, AUµ). It can be shown

by looking at the vector equations of motion that the Lagrangian does not depend on the

AUµ, i.e. δL/δAUµ = 0. Further, the electric vectors AI
µ that are dual to the magnetic

vectors AIµ, which are used in some gauging, have massive gauge transformations, δAI
µ =

−DµΛI − ϑIiΛiµ and can be gauged away. The nB 2-forms Bi can by eliminated from the

Lagrangian by using their equations of motion eq. (3.132). The 2-forms appear without

derivatives in eq. (3.132) so that it is possible to solve for them and to substitute the on-

shell expression back into the action. This is allowed as the 2-forms appear everywhere (up

to partial integrations) without derivatives. One then ends up with an action depending

on nB magnetic vectors AIµ and nV − nB electric vectors AU
µ.

The relation between the tensor hierarchy and the action (or its equations of motion)

as well as the physical interpretation of the field content of the extended hierarchy will be

discussed in the next section.
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4 Summary and conclusions

We have discussed the possible symmetries of N = 1, d = 4 supergravity and their gauging

using as gauge fields both electric and magnetic vectors.

When using both electric and magnetic 1-forms as gauge fields at the same time one

is also compelled to introduce 2-forms BA, associated to all the possible symmetries of

the theory. For each electric vector AΛ whose magnetic dual AΛ is gauged, because the

magnetic components of the embedding tensor ϑΛA do not vanish, one introduces a 2-

form ϑΛABA in its field strength. AΛ has a massive gauge transformation and it forms

a Stückelberg pair with the 2-form ϑΛABA. By electro-magnetic duality we end up with

Stückelberg pairs AM , ϑM
ABA.

The embedding tensor-projected 2-forms ϑM
aBa are dual to the embedding tensor-

projected Noether currents that are associated to gauged isometry directions ϑM
aja

whereas the remaining 2-forms Ba are dual to ungauged isometry directions. The 2-forms

Ba and B♯ are pure gauge at lowest order in fermions, but it is to be expected that they

are actually dual to the Noether currents associated to the respective symmetries, which

are bilinear in fermions. To properly test this idea one would have to construct the super-

symmetry algebra at quartic order in fermions.

We have seen that the presence of a non-vanishing superpotential breaks the global

symmetries that we have denoted with the indices ¿ a,#. Thus, if L 6= 0, we must set

(ϑM
aPa + ϑM

♯P♯) = 0, which is a new constraint that the embedding tensor must satisfy.

We have written it in the form eq. (3.30) to handle the cases L = 0 and L 6= 0 simulta-

neously. When L 6= 0, then, N = 1, d = 4 supersymmetry implies that the 2-forms Ba, B♯

transform under new Stückelberg shifts parametrized by a 2-form gauge transformation

parameter Λ. Still, since Λ 6= 0 only when L 6= 0, and in this case we have to impose the

new constraint (something we have expressed through eq. (3.77)), the gauge transforma-

tions of the projected 2-forms ZMABA are left unchanged by the new 2-form Stückelberg

shifts. Therefore the field strengths FM and the action keep their standard form.

In the standard tensor hierarchy it is necessary to introduce 3-forms CA
M to construct

gauge-covariant field strengths HA for the 2-forms BA. These 3-forms are the dual of

the embedding tensor ϑM
A. However, when L 6= 0, the standard tensor hierarchy field

strengths HA need to be modified by the addition of a 3-form C, into H ′
A, see eq. (3.80).

The 3-form C must absorb the new Stückelberg shifts of the 2-forms Ba, B♯, but one has

to show that N = 1, d = 4 supergravity allows for such a 3-form.

We have found consistent supersymmetry transformation rules for two 3-forms C and

C ′ the first of which has precisely the required gauge transformations. C ′ is unexpected

from the hierarchy point of view but turns out to be the dual of the superpotential,

seen as a deformation of the ungauged theory. The fact that it is not predicted by the

hierarchy (even in its extended form which includes the constraint eq. (3.30)) is due to the

fact that the superpotential is not associated to any gauge symmetry, which is the basis

of the tensor hierarchy. On the other hand, the existence of the 3-form C suggests the

possible existence of another deformation of N = 1, d = 4 supergravity unrelated to gauge

symmetry and to the superpotential.
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Again, in the L 6= 0 case the field strengths GC
M need to be modified by the addition of

new 4-forms DM not predicted by the standard hierarchy, which must absorb gauge trans-

formations related to Λ. In the standard hierarchy the 4-forms DE
NP ,DAB ,D

NPQ are as-

sociated to the constraints QNP
E , QAB , LNPQ. The fourth 4-form that appears when L 6= 0

in N = 1, d = 4 supergravity could well be related to the constraint (ϑM
aPa + ϑM

♯P♯) = 0

that the embedding tensor must satisfy. This can only be fully confirmed by the construc-

tion of a supersymmetric action containing all the p-forms as in [15]. Nevertheless, it is clear

that, when we vary the action without any constraints imposed on the embedding tensor, we

expect it to be necessary to introduce a 4-form DM multiplying that constraint. The gauge

transformations of the 4-forms DM should compensate for this lack of gauge invariance.

Some, but not all, of the p-forms in the hierarchy may be associated to dynamical

supersymmetric branes. In order to construct a κ-symmetric action for a (p−1)-brane that

couples to a certain p-form, two necessary conditions are that the p-form transforms under

no Stückelberg shift and that under supersymmetry transform into a gravitino multiplied

by some scalars may couple to branes. In N = 1, d = 4 supergravity the p-forms that satisfy

this condition are the (subset) of 2-forms Ba whose gauge transformations are massless.

These are the 2-forms whose field strengths are dual to ungauged isometry currents. From

the analysis of [19, 27] we know that these couple to strings (one-branes that have been

referred to as stringy cosmic strings). Another form which satisfies the criteria is the 3-form

C ′ which is a natural candidate to describe couplings to domain walls. We note that there

are no 1-forms and 4-forms that can couple to a massive brane. There are thus no 1/2 BPS

black holes in the theory and no 1/2 BPS space-time filling branes. The latter fact may be

qualitatively understood from the fact that one cannot truncate the minimal N = 1, d = 4

supersymmetry algebra to a supersymmetry algebra with half of the original supercharges.
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A Kähler geometry

A Kähler manifold is a complex manifold on which there exist complex coordinates Zi and

Z∗ i∗ = (Zi)∗ and a real function K(Z,Z∗), called the Kähler potential, such that the

ds2 = 2Gii∗ dZ
idZ∗ i∗ , (A.1)
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with

Gii∗ = ∂i∂i∗K . (A.2)

The Kähler (connection) 1-form Q is defined by

Q ≡
1

2i
(dZi∂iK− dZ∗ i∗∂i∗K) , (A.3)

and the Kähler 2-form J is its exterior derivative

J ≡ dQ = iGii∗dZ
i ∧ dZ∗ i∗ . (A.4)

The Kähler potential is defined only up to Kähler transformations

K′(Z,Z∗) = K(Z,Z∗) + f(Z) + f∗(Z∗) , (A.5)

where f(Z) is any holomorphic function of the complex coordinates Zi that leave the Kähler

metric and 2-form invariant. The components of the Kähler connection 1-form transform

according to

Q′
i = Qi −

i

2
∂if . (A.6)

Objects with Kähler weight (q, q̄) transform by definition under the above Kähler

transformations with a factor e−(qf+q̄f∗)/2 and their Kähler-covariant derivative D is

Di ≡ ∇i + iqQi , Di∗ ≡ ∇i∗ − iq̄Qi∗ , (A.7)

where ∇ is the standard covariant derivative associated to the Levi-Cività connection. The

Ricci identity for this covariant derivative is, on objects without any indices and Kähler

weight (q, q̄)

[Di,Dj∗ ] =
1

2
(q̄ − q)Gij∗ . (A.8)

When (q, q̄) = (1,−1), this defines a complex line bundle over the Kähler manifold

whose first, and only, Chern class equals the Kähler 2-form J , i.e. a Kähler-Hodge (KH)

manifold. These are the manifolds parametrized by the complex scalars of the chiral mul-

tiplets of N = 1, d = 4 supergravity. Furthermore, objects such as the superpotential and

all the spinors of the theory have a well-defined Kähler weight.

We will often use the spacetime pullback of the Kähler-covariant derivative on tensor

fields with Kähler weight (q,−q) (weight q, for short):

Dµ = ∇µ + iqQµ , (A.9)

where ∇µ is the standard spacetime (and/or Lorentz-) covariant derivative plus possibly

the pullback of the Levi-Cività connection. Qµ is the pullback of the Kähler 1-form

Qµ =
1

2i
(∂µZ

i∂iK − ∂µZ
∗ i∗∂i∗K) . (A.10)
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B Projectors of the d = 4 tensor hierarchy

The 4-dimensional hierarchy’s field strengths are defined in terms of the invariant tensors

ZMA, YAM
B ,WC

MAB,WCNPQ
M ,WCNP

EM which act as projectors. In this appendix we

collect their definitions and the properties that they satisfy.

The projectors are defined by

ZPA ≡ −
1

2
ΩNPϑN

A =











+1
2ϑ

ΛA ,

−1
2ϑΛ

A ,

(B.1)

YAM
C ≡ ϑM

BfAB
C − TA M

NϑN
C , (B.2)

WC
MAB ≡ −ZM [AδC

B] , (B.3)

WCNPQ
M ≡ TC (NP δQ)

M , (B.4)

WCNP
EM ≡ ϑN

DfCD
EδP

M +XNP
MδC

E − YCP
EδN

M . (B.5)

They satisfy the orthogonality relations

ZMAYAN
C =

1

2
ΩPMQPN

C = 0 , (B.6)

YAM
CWC

MAB = YAM
CWCNPQ

M = YAM
CWCNP

EM = 0 . (B.7)

The W projectors are related to the embedding tensor constraints by

ϑM
CWC

MAB = 2QAB , (B.8)

ϑM
CWCNPQ

M = LNPQ , (B.9)

ϑM
CWCNP

EM = 2QNP
E . (B.10)

Under variations we have

δϑM
CWC

MAB = ϑM
CδWC

MAB =
1

2
δ(ϑM

CWC
MAB) = δQAB , (B.11)

δϑM
CWCNPQ

M = δLNPQ , (B.12)

δϑM
CWCNP

EM = ϑM
CδWCNP

EM =
1

2
δ(ϑM

CWCNP
EM) = δQNP

E . (B.13)

The constraints eqs. (3.22), (3.25) and (3.26) are related through the following identities

QABYBP
E −

1

2
ZNAQNP

E = 0 , (B.14)

Q(MN)
A − 3LMNPZ

PA − 2QABTBMN = 0 , (B.15)

where eq. (B.14) can be obtained from eq. (B.15) by multiplying the latter by ZNE. Differ-

entiating these identities with respect to the embedding tensor, using eqs. (B.11)–(B.13),

we also find the following relations among the W tensors:

WC
MABYBP

E −
1

2
ZNAWCNP

EM −
1

4
QM

P
EδA

C +QAB
[

δM
P fBC

E − TBP
MδE

C

]

= 0 , (B.16)

WC(MN)
AQ − 3WCMNP

QZPA −
3

2
LMN

QδC
A − 2WC

QABTB MN = 0 . (B.17)
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C Gauge transformations and field strengths of the d = 4 tensor hierar-

chy

The gauge transformations of the different fields of the tensor hierarchy are

δhA
M = −DΛM − ZMAΛA , (C.1)

δhBA = DΛA + 2TA NP

[

ΛNFP +
1

2
AN ∧ δhA

P

]

− YAM
CΛC

M , (C.2)

δhCC
M = DΛC

M − FM ∧ ΛC − δhA
M ∧BC −

1

3
TC NPA

M ∧AN ∧ δhA
P

+ΛMHC −WC
MABΛAB −WCNPQ

MΛNPQ −WCNP
EMΛE

NP , (C.3)

δhDAB = DΛAB + 2T[AMN Λ̃B]
(MN) + Y[A|P

E(ΛB]E
P −BB] ∧ ΛE

P ) + DΛ[A ∧BB]

−2Λ[A ∧HB] + 2T[A|NP

[

ΛNFP −
1

2
AN ∧ δhA

P

]

∧B|B] , (C.4)

δhDE
NP = DΛE

NP + Λ̃E
(NP ) +

1

2
ZNBΛBE

P − FN ∧ ΛE
P

+CE
P ∧ δhA

N +
1

12
TEQRA

N ∧AP ∧AQ ∧ δhA
R + ΛNGE

P , (C.5)

δhD
NPQ = DΛNPQ − 3Z(N |AΛ̃A

|PQ) − 2A(N ∧ dAP ∧ δhA
Q)

−
3

4
XRS

(NAP | ∧AR ∧AS ∧ δhA
|Q) − 3Λ(NFP ∧ FQ) , (C.6)

where we remark that ΛE
NP is a 3-form and Λ̃E

(NP ) is a 4-form.

Their gauge-covariant field strengths are

FM = dAM +
1

2
X[NP ]

MAN ∧AP + ZMABA , (C.7)

HA = DBA + TA RSA
R ∧

[

dAS +
1

3
XNP

SAN ∧AP

]

+ YAM
CCC

M , (C.8)

GC
M = DCC

M +

[

FM −
1

2
ZMABA

]

∧BC +
1

3
TC SQA

M ∧AS ∧ dAQ

+
1

12
TC SQXNT

QAM ∧AS ∧AN ∧AT

+WC
MABDAB +WCNPQ

MDNPQ +WCNP
EMDE

NP . (C.9)

These field strengths are related by the following hierarchical Bianchi identities

DFM = ZMAHA , (C.10)

DHA = YAM
CGC

M + TA MNF
M ∧ FN . (C.11)
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