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ABSTRACT: In this paper we construct the supersymmetric tensor hierarchy of N=1,
d=4 supergravity. We find some differences with the general bosonic construction of 4-
dimensional gauged supergravities.

The global symmetry group of N = 1,d = 4 supergravity consists of three factors:
the scalar manifold isometry group, the invariance group of the complex vector kinetic
matrix and the U(1) R-symmetry group. In contrast to (half)-maximal supergravities, the
latter two symmetries are not embedded into the isometry group of the scalar manifold.
We identify some components of the embedding tensor with Fayet-lIliopoulos terms and
we find that supersymmetry implies that the inclusion of R-symmetry as a factor of the
global symmetry group requires a non-trivial extension of the standard p-form hierarchy.
This extension involves additional 3- and 4-forms. One additional 3-form is dual to the
superpotential (seen as a deformation of the simplest theory).

We study the closure of the supersymmetry algebra on all the bosonic p-form fields of
the hierarchy up to duality relations. In order to close the supersymmetry algebra without
the use of duality relations one must construct the hierarchy in terms of supermultiplets.
Such a construction requires fermionic duality relations among the hierarchy’s fermions

and these turn out to be local.
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The embedding tensor formalism,! introduced in refs. [4-8] allows the study of the most

general gaugings of field theories and, in particular, of supergravity theories. So far, it has

been applied to maximally- and half-maximally-extended supergravities in various dimen-

sions [9-14], but not (or, at least, as we are going to see, not in detail?) to supergravities

with less supersymmetry, in particular N = 1,2 in d = 4 and minimal supergravities

in d=25,6.

!For recent reviews see refs. [1-3].
2The N = 2,d = 4 case has been partially studied in ref. [31].



A crucial difference between these two cases is that in the former the global symmetries
of the ungauged theories that act on the fermionic fields (the group of automorphisms of the
supersymmetry algebra or R-symmetry) H,y also act on the bosonic fields of the theory,
while in the latter they do not. More precisely, if we denote by G the global symmetry
group of the ungauged theories and by G} the subgroup of G that acts on the bosons, in
the maximal or half-maximal supergravities, Hayt C Gpos = G. In particular, the scalars
parametrize the coset G/(Haut X Huatter) Where Hpatter is related to the matter multiplets
and it is trivial in maximally-extended supergravities.

The situation in N = 1,2 supergravities in d = 4 or in minimal supergravities in
d = 5,6 is totally different: one can write G = Gpos X Haut- Further, in theories with low
amounts of supersymmetry there may exist symmetries that act only on the vectors (and
spinors) but not on the scalars. This is particularly clear in N = 1,d = 4 supergravity where
one can take only vector supermultiplets and no chiral supermultiplets. The corresponding
symmetry group is the invariance group of the complex vector kinetic matrix. These facts
have to be taken into account properly and it is our goal to do so for the general case of
N = 1,d = 4 supergravity by extending the recently found general 4-dimensional tensor
hierarchy [15]. The 4-dimensional tensor hierarchy has also been studied in [16].

The tensor hierarchy [7, 8, 14-16]. is an interesting structure that arises as part of
the embedding tensor formalism. It consists of a system of p-form potential fields of all
degrees p = 1,--- ,d in terms of which one can construct gauge-covariant field strengths
of all degrees p = 2,--- ,d. The starting point in the construction of the tensor hierarchy
associated to the gauging of some theory is the field content and global symmetry group of
that theory. This global symmetry group is gauged using the embedding tensor formalism
and in order to have gauge-covariant field strengths it is usually necessary to introduce
higher-rank p-form potentials in a bootstrap procedure ending with the introduction of
p = d-form potentials.

The extra p-form fields that one has to introduce in the construction of the hierarchy
turn out to be dual to objects such as Noether currents, deformation parameters etc. of the
field theory and, therefore, do not add new degrees of freedom when we add them to the
theory. Only some of them are completely necessary to construct a gauge-invariant action
for the gauged field theory. In the d = 4 case these are the 1- and 2-forms. Then, why should
we be interested in the rest, apart from their need for consistency of the full construction?

Perhaps the main reason why one should be interested in all the higher-rank p-forms
of a theory is the relation between supergravity p-form potentials and supersymmetric
(p — 1)-extended objects (“branes”) which is at the core of many of the advances made
over the last decade in String Theory. While the branes associated to higher-rank p-forms
of the 10-dimensional supergravities are by now well known [22-25], little or nothing is
known about those of supergravities with lower supersymmetry and dimensionality like
N = 1,2, d = 4 supergravity. For instance, in ref. [27] it was found that one can introduce,
consistently with supersymmetry, 2-forms in N = 2,d = 4 supergravity associated with
isometries of the scalar manifold to which strings couple. These 2-forms are “predicted”
by the 4-dimensional tensor hierarchy [8]. But the 4-dimensional tensor hierarchy also

predicts 3-forms and 4-forms and one would like to know if they can also be consistently



introduced in the supergravity theory and the kind of extended objects (domain walls and
spacetime-filling branes) they may couple to.

There is another reason to be interested in the higher-rank p-forms, in particular for p =
d—1 of a supergravity theory. These (d—1)-form potentials are dual to the (“deformation”)
parameters that one can introduce consistently in the theory: gauge coupling constants
(represented by the embedding tensor), Stiickelberg masses etc. Finding all the (d — 1)-
form potentials one can get information about the most general deformations (gaugings,
massive deformations. ...) of the theory.

In this paper we are going to study the possible p-form potentials that one can consis-
tently add to N = 1,d = 4 supergravity, generalizing the results of ref. [19]. As we have
explained, this problem is related to the construction of the tensor hierarchy associated to
the most general (electric and magnetic) gauging of the theory. The global symmetry group
G of these theories can be written as® Giso X Gy X U(1)g where Gijgo is the isometry group
of the scalar manifold, Gv is the invariance group of the complex vector kinetic matrix and
U(1)gr the R-symmetry group. We will use the general results of [15] but supersymmetry
will force us to consider additional fields not contained in the standard tensor hierarchy. In
particular, we will find a 3-form that can be interpreted as the dual to the superpotential
which is a deformation of N = 1,d = 4 supergravity that is not related to a gauging. For
earlier work on related questions see refs. [19, 23, 24, 26, 27].

This paper is organized as follows: in section 2 we review the standard electric gauging
of perturbative symmetries of matter-coupled N = 1,d = 4 supergravity using the (electric
part of the) embedding tensor. This will allow us to introduce our notation and conventions.
In section 3 we introduce N = 1,d = 4 supergravity with electric and magnetic gaugings
of perturbative and non-perturbative symmetries of the theory. This requires the use of
the full embedding tensor and the introduction in the action of the 2-forms predicted by
the general 4-dimensional tensor hierarchy. At this point we have a completely consistent
theory with 1- and 2-forms and we do not need to introduce any higher-rank form potentials
unless we worry about the gauge-covariant field strength of the 2-forms. This is necessary,
though, to close (on-shell) the supersymmetry algebra on the 2-forms and we are led to
consider all the p-form potentials predicted by the 4-dimensional tensor hierarchy. We,
then, proceed to construct consistent (on-shell) supersymmetry transformations for all the
hierarchy p-form potentials in section 3.3 which will lead us to extend the field content
of the hierarchy. Finally, we review our results and present our conclusions in section 4.
The appendices contain summaries of useful formulae concerning Kéhler geometry and the
4-dimensional tensor hierarchy.

2 Electrically gauged N = 1, d = 4 supergravity

In this section we are going to describe the “standard” gauged N = 1,d = 4 theory [28]
using the embedding-tensor formalism. By “standard” we mean that only perturbative
global symmetries of the ungauged theory have been gauged using as gauge fields the

3This splitting of G is factors is not unambiguous. In particular, U(1) g transformations can be combined
with transformations of the other two factors. We will discuss this in detail later.



electric vector fields. In order to make as clear as possible the construction of the gauged
theory, we are going to describe first the ungauged theory and its global symmetries and
then the gauging procedure.

2.1 Ungauged N =1, d = 4 supergravity

The basic* field content of any N = 1,d = 4 ungauged supergravity theory is a supergravity
multiplet with one graviton e, and one chiral gravitino® Yy, ne chiral multiplets with as
many chiralinos x* and complex scalars Z% i = 1,--- ,nc that parametrize an arbitrary
Kahler-Hodge manifold with metric G;;+, and ny vector multiplets with as many Abelian
vector fields AN with field strengths FA = dA* and chiral gauginos A, A =1,--- ,ny.

In the ungauged theory the couplings between the above fields are determined by the
Kéhler metric® Gij+, an arbitrary holomorphic kinetic matrix fax(Z) with positive-definite
imaginary part and an arbitrary holomorphic superpotential W (Z) which appears through
the covariantly holomorphic section of Kéahler weight (1,—1) £(Z, Z*):

L(Z,2) = W (Z)er?, (2.1)

so its Kéhler-covariant derivative given in eq. (A.7) for § = —1is D=L = K29, W = 0. In
absence of scalar fields, it is possible to introduce a constant superpotential £L =W = w.
The chirality of the spinors is related to their Kéahler weight: 1/1,“)\2 and Y’ have
the same chirality and v, A¥ and x**" have the same Kéhler weight (1/2,—1/2) so their
covariant derivatives take the form of eq. (A.9) with ¢ = 1/2.
The action for the bosonic fields in the ungauged theory is

Sy = / [*R — 2G-dZ' AxdZ*T" — 23mfrs PN A *FE + 2Refas FA A FE — *Vu] . (2.2)
where the scalar potential V;, is given by
V(Z,Z*) = —24|L|* + 8GY D;LDj L* . (2.3)
In absence of scalar fields the constant superpotential £L = W = w leads to an anti-de
Sitter-type cosmological constant

Vi = —24|wl|?. (2.4)

The supersymmetry transformation rules for the fermions (to first order in
fermions) are

0y = Dye+iLlry,e" = [Vu + %Qu] €+ iLly,e”, (2.5)
1

SN = 5 F e, (2.6)

SexX' = iQZ'e +2G"7 Dj L. (2.7)

“In the ungauged classical theory (this work is only concerned with the classical theory) linear multiplets
can always be dualized into chiral multiplets and so we do not need to deal with them. After the gauging,
this is not possible in general, but the embedding tensor formalism will allow us to introduce the 2-forms
in at a later stage in a consistent form.

®The conventions used here are essentially those of refs. [19] and [17].

5The elements of Kéhler geometry needed in this paper are reviewed in appendix A.



The last terms in egs. (2.5) and 2.7) are fermion shifts associated to the superpotential
which contribute quadratically to the potential V.

In absence of scalar fields and with constant superpotential £L = W = w the fermion
shift in eq. (2.5) can be interpreted as part of an anti-de Sitter covariant derivative

Oty = V€ +iwye” . (2.8)

The supersymmetry transformation rules for the bosonic fields (to the same order in

fermions) are

e, = —i@ﬂae* +c.c., (2.9)

5 AN, = %S\Afyue* +c.c., (2.10)
1

62" = Xe. (2.11)

2.2 Perturbative symmetries of the ungauged theory

The possible matter couplings of N = 1,d = 4 supergravities are quite unrestricted. As
a result, the global symmetries of these theories can be very different from case to case.
Depending on the couplings it is possible to have, at the same time, symmetry transfor-
mations that only act on certain fields and not on the rest and symmetry transformations
that act simultaneously on all of them. Thus, it is not easy to describe all the possible
global symmetry groups in a form that is at the same time unified and detailed without
introducing a very complicated notation with several different kinds of indices. We are
going to try to find an equilibrium between simplicity and usefulness.

Therefore, we are going to denote the group of all the global symmetries of the theory
we work with” by G and its generators by T4 with A, B,C =1,--- ,rank G. They satisfy
the Lie algebra

[Ta,TB] = —fap“Tc . (2.12)

We denote by Gpes the subgroup of transformations of G' that act on the bosonic fields
and its generators by T, with a,b,c = 1,--- ;rank G}, < rankG. They satisfy the
Lie subalgebra

[Taa Tb] = —fanTc. (2'13)

In N = 1,d = 4 supergravity we have G = Gpos X U(1)g and rank Gpes = rank G — 1.
We split the indices accordingly as A = (a, ). We may introduce a further splitting of the
indices of Gpes, & = (a,a) to distinguish between those that act on the scalars (holomorphic
isometries, belonging to the group® Gis, C Ghos) and those that do not. The latter, as we

"In this section we will use this notation only for the perturbative symmetries and later on we will use
the same notation for all symmetries. It should be easy to recognize from the context which case we are
talking about.

8Not all the isometries of the metric will be perturbative or even non-perturbative symmetries of the full
theory. They have to satisfy further conditions that we are going to study next. It is understood that, in or-
der not to have a complicated notation, we denote by Gis, only those isometries which really are symmetries
of the full theory and not the full group of isometries of G;;+ (although they may eventually coincide).



will see, constitute the subgroup Gy C Gy of symmetries that only act on the vector
(super)fields and leave invariant the kinetic matrix fay,. We have, then, Gpos = Giso X Gv,
since any bosonic symmetry transformation is either an element of Gig, or of Gy and further
since by construction no element of Gig, can also be an element of Gy and vice versa.

Let us describe the U(1)g transformations first. Under a U(1)g transformation with
constant parameter of, objects with Kéhler weight ¢ are multiplied by the phase e—iq0f
All the fermions wu,)\z,x*i*, have a non-vanishing Kéhler weight 1/2, though. All the
bosons have zero Kahler weight and do not transform under U(1) .

The superpotential £ has a non-vanishing Kéahler weight and therefore transforms
under U(1)gr. As a general rule, in the presence of a non-vanishing superpotential, U(1) g
will only be a symmetry of N = 1,d = 4 supergravity if the phase factor acquired by £ in a
U(1)g transformation can be identified with a U(1) transformation of the scalars that leaves
invariant the rest of the action. These transformations, which are necessarily isometries of
the Kéahler metric will be described next, but we can already give two examples to clarify
the above statement.

1. Let us consider the case with no chiral superfields and, therefore, no scalars and a
constant £ = W = w giving rise to the potential eq. (2.4) and the gravitino su-
persymmetry transformation eq. (2.8). In this case U(1)r transforms the complex
constant w into e~ w and, therefore it is not a symmetry since symmetry transfor-

mations act on fields, not on coupling constants. Certainly, we can never gauge these

transformations since the local phases would transform a constant into a function

which is not a field.

2. Let us consider a theory with just one chiral supermultiplet, with K&hler potential
K = |Z|? and superpotential W(Z) = wZ where w is some complex constant so £ =
wZelZ’/2. 1n this case U(1)g transforms £(Z, Z*) into £'(Z, Z*) = wei0" Zel21/2,
This transformation can be seen as a transformation of the scalar 2’ = e~ Z which
happens to leave invariant the Kéhler potential, metric etc. In this case U(1)g is a
symmetry when identified with a U(1) transformation acting on the complex scalar.

The Gis, transformations with constant parameters a® act on the complex scalars Z°

as reparametrizations
6aZ' = 0Pka'(Z) . (2.14)
If these transformations are symmetries of the full theory they must, first, preserve the
metric G;j« and its Hermitean structure, which implies that the ka's are the holomorphic
components of a set of Killing vectors {K, = ka'0; + k;lal*} that satisfy the Lie algebra

of the group Gigo

[Kaa Kb] = _fachc . (2.15)

The holomorphic and antiholomorphic components satisfy, separately, the same Lie algebra.
We can formally add to this algebra, vanishing “Killing vectors” K, associated to the
transformations that do not act on the scalars (but do act on the vectors), so we have the

full algebra of Gy
[Kaa Kb] = —fab K. (2'16)



Further, we can also add another vanishing Killing vector Ky, formally associated to U(1)g
and write the full Lie algebra of G

[Ka, Kp] = —fap“Kc, (2.17)
so the reparametrizations of the scalars Z* can be written as
6aZ' = o k4N (2). (2.18)

The Killing property of the reparametrizations only ensures the invariance of the kinetic
term for the scalars. In order to be symmetries of the full theory they must preserve the
entire Kéahler-Hodge structure and leave invariant the superpotential and the kinetic terms
for the vector fields.

1. Let us start with the Kahler structure. The reparametrizations must leave the Kahler
potential invariant up to Kéahler transformations, i.e., for each Killing vector K4

£4K = £5, K = kA"0,K + k570K = Xa(Z) + N5y(Z7). (2.19)
This relation is consistent for A = a, f, if
Reda =RNe Xy = 0. (2.20)
Furthermore, the reparametrizations must preserve the Kahler 2-form J
£a4J =0. (2.21)

The closedness of J implies that £47 = d(ix,J) and therefore the preservation
of the Kahler structure implies the existence of a set of real functions P4 called
momentum maps such that

ik, J =dPa, (2.22)

which is also consistent for A = a, if the corresponding
Pa = Py = constant . (2.23)
Using only eq. (2.19) a local solution to eq. (2.22) is provided by
iPa =ka'O:K — A4, (2.24)
which, on account of eq. (2.19) is equivalent to
iPy=—(ki7 0K — XY), (2.25)

so that, for A = a, f,
Ao = —iP,, Ay = —iPy, (2.26)

where P, and Py are real constants (see eq. (2.23)). Eq. (2.24) implies that the
momentum maps can be used as prepotentials from which the Killing vectors
can be derived:



Observe that this equation is consistent with the triviality of the “Killing vectors”
K,, Ky and the constancy of the corresponding momentum maps eq. (2.23).

Using egs. (2.17), (2.19) and (2.24) it can be shown that the momentum maps satisfy
the so-called equivariance condition:

£aPp = 2ikiA'ky7 Gijr = —faB“Pe . (2.28)

This equivariance condition implies that momentum maps can only be constant
and different from zero for Abelian factors. These constants will be associated after
gauging to the D- or Fayet-Iliopoulos terms.

2. If the Kéahler-Hodge structure is preserved, any section ® of Kéahler weight (p,q)

must transform as?

5a® = —a?(Ly— K4)®, (2.29)

where L4 stands for the symplectic and Kéahler-covariant Lie derivative w.r.t. K
and is given by

1
LA(I)E{fA—i- [TA+§(Z7)\A+(])\*A):|}(I), (2.30)

where the T4 are the matrices that generate the subgroup of Gy that acts on
the vectors. The T4 are assumed to be in the representation in which the section
transforms and they satisfy the Lie algebra eq. (2.12). This means that the gravitino
1, transforms according to

Sathy = —%aA%m Aty . (2.31)

For A = a, § we have just U(1)g transformations for each component Py, Py different
from zero. For A = a the transformations are still global but the Sm Ags are in
general functions of Z, Z*. These cannot be compensated by U(1)g transformations.

The chiralinos y* transform according to
Sax! =a? {ajkAixﬂ’ + %Sm )\AX’} , (2.32)

and the transformations of the gauginos will be discussed after we discuss the
transformations of the vector fields.

3. Let us now consider the invariance of the superpotential W. We can require,
equivalently, that the section £ be invariant up to Kahler transformations. A
Kihler-weight (p, q) section ® will be invariant up to Kéhler transformations if!'?

1
La® =0, = £a®=—|Ta+ 3(pha+ql)| 2. (2.33)

9We do not write explicitly any spacetime, target space etc. indices.
10This condition only makes sense for transformations K, that really act on the scalars.



Therefore, we must require for all A = a
Kol = —iSm AL, = 0,L=—ia®Im AL, (2.34)

but we cannot extend straightforwardly the same expression to all A since, as dis-
cussed at the beginning of this section, the corresponding transformations (constant
phase multiplications) are only symmetries when £ = 0 or when they are associated
to transformations of the scalars and this is, by definition, not the case when A = a, .

We, therefore, write

bal = —ia*SmAAL (2.35)

imposing at the same time the constraint!!
(a*Sm A, + fIm AL = (0P, + o*Py)L = 0. (2.36)

4. The kinetic term for the vector fields A in the action will be invariant!? if the
effect of a reparametrization on the kinetic matrix fax; is equivalent to a rotation
on its indices that can be compensated by a rotation of the vectors, or a constant
Peccei-Quinn-type shift i.e.

Safrs = —a*Lafax = & Tans — 2T, 2 fsyal » (2.37)
50414/\ — aaTaEAAE7 (238)

where the shift generator is symmetric T, o», = Taxa to preserve the symmetry of
the kinetic matrix.

Observe that for a = a, £, fax = 0, and, for consistency, we must have T, (AQfE)Q =0,
i.e. the transformations T}, are those that preserve the kinetic matrix. This is why
we call the group generated by T} the invariance group Gy of the complex vector
kinetic matrix.

The iteration of two of these infinitesimal transformations indicates that they can

be described by the 2ny x 2ny matrices!
Tar™ 0
T, = , T.'s = -T.s™, (2.39)
TaAE TaAE
satisfying the Lie algebra
[To, Tv] = — fap Tt . (2.40)

"This constraint should be understood as a way to consider the cases £ = 0 and £ # 0 simultaneously:
when £ # 0 the symmetry transformations must satisfy (a®Pa + auPu) = 0 and they are unrestricted
when £ = 0.

12Tt is at this point that the restriction to perturbative symmetries (symmetries of the action) is made.

130Observe that this group is the semidirect product of the group that rotates the vectors, generated by
the matrices Thx” and the Abelian group of shifts generated by the matrices Ty ax. Evidently, some of
these matrices identically vanish. This is the price we have to pay to use the same indices a, b, c, ... for the
generators of both groups.



As we have discussed some of the transformations generated by the K, may only
act on the scalars and not on the vectors, for instance, because the kinetic matrix
does not depend on the relevant scalars. We assume that the corresponding subset
of 2ny x 2ny matrices T, are identically zero. On the other hand, we can formally
add to these matrices another identically vanishing 2ny x 2ny matrix T} so we have
a full set of 2ny x 2ny matrices T4 satisfying the Lie algebra of G, eq. (2.12).

Combining all these results we conclude that the gauginos transform according to
SudE = —aA [Ty =2 + %%m AaNT| (2.41)

At this point there is no restriction on the group G nor on the ny X ny matrices
Tan™, although one can already see that the lower-triangular 2ny x 2ny matrices T4 are
generators of the symplectic group.

2.3 Electric gaugings of perturbative symmetries

We are now going to gauge the symmetries described in the previous subsection using as
gauge fields the electric 1-form potentials A, This requires the introduction of the (elec-
tric) embedding tensor ¥ A4 to indicate which global symmetry is gauged by which gauge
field AN and, equivalently, to identify the parameters of global symmetries o that are
going to be promoted to local parameters with the gauge parameters A*(z) of the 1-forms:

oA (z) = A (2)9s?. (2.42)

We will write now the constraint eq. (2.36) in the form!4

(952Ps + I P L = 0. (2.43)

Taking into account eq. (2.18) and the definition eq. (2.42), the gauge transformations
of the complex scalars will be
07" = A¥95 k4" (2.44)

The embedding tensor cannot be completely arbitrary. To start with, it is clear that

it has to be invariant under gauge transformations, which we denote by ¢:
§9A = —ATQsp?, Qua® = 95T a0 — 9520 frct. (2.45)
Then, the embedding tensor has to satisfy the quadratic constraint
Quat =0. (2.46)

The gauge fields AM effectively couple to the generators

XZQF = ﬁzATAQF s XEQF = ﬁzATA or , XE = ﬁzATA . (2.47)

1 Again, this constraint and other constraints of the same kind that will follow, should be understood
as a way to consider the cases £ = 0 and £ # 0 simultaneously: when £ # 0 the embedding tensor must
satisfy (952P, + 9= P;) = 0 and it is unrestricted when £ = 0.

,10,



From the definition of the quadratic constraint eq. (2.46)
Xam) et =0, (2.48)
which, for this purely electric gauging case implies
Xan) =0, (2.49)

and no need to intoduce 2-form potentials. From the commutator of the matrices T4 and
using the quadratic constraint we find the commutator of X generators

[Xp, Xs] = —Xan"Xq, (2.50)

from which we can derive the analogue of the Jacobi identities.

We are now ready to gauge the theory. We will not attempt to give the full super-
symmetric Lagrangian and supersymmetry transformation rules, but only those elements
that allow its construction to lowest order in fermions (that is we consider supersymmetry
transformations acting on fermions up to first order fermion terms and supersymmetry
transformations acting on bosons up to second order fermions terms).

First, we have to replace the partial derivatives of the scalars in their kinetic term by
the covariant derivatives

D7 =dZ + AN\ kAT (2.51)

where the gauge potentials transform according to
JAY = —DA¥ = — (dA¥ + Xpo"AMAY) . (2.52)
We also replace in the action the vector field strengths by the gauge-covariant field strengths
F* = dA* + %XAQEAA A AT (2.53)

Observe that we have not introduced a coupling constant ¢ as it is standard in the
literature since the embedding tensor already plays the role of a coupling constant and
even of different coupling constants if we are dealing with products of groups. Observe also
that 1911’4 does not appear in any of these expressions because Ky = T} = 0.

We have to replace the (Kahler- and Lorentz-) covariant derivatives D of the spinors
in their kinetic terms by the gauge-covariant derivatives 2:

i
Q,Lﬂbu = {D,u - §AA,U,19AAPA} hy (254)
DX’ = DX’ + DD 2Nk — AMp A0k a'xT + %AAﬂAAPAXi : (2.55)
DAY = {D - %AAWPA} AT — XpoB AN (2.56)

When £ = 0 the components Ia" and 922 occur in all these covariant derivatives.
When £ # 0 the embedding tensor 95* does not appear (and Y% only appears in the
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last term of ®A¥). In the case £ # 0 the gauging of the U(1)z symmetry requires U(1)g
to be identified with a U(1) subgroup acting on the scalars. Thus the embedding tensor
component associated to a U(1)r gauging is contained in 9,2.

The supersymmetry transformations of the bosonic fields do not change with the gaug-
ing, but those of the fermions do by the above replacement of (Kéhler- and Lorentz-) co-
variant derivatives by gauge-covariant derivatives. Further in the gaugino supersymmetry
transformation the field strength is given by eq. (2.53) and there appears a new fermion
shift term D*. To first order in fermions, we have

Oty = Dye+ilyue”, (2.57)
S A” = % [F>F +4iD*] e, (2.58)
Sex' =i @7 +2G9 DjuLre, (2.59)
where T =4V FEY,, in which FEF =1 (F+ix F¥) is the selfdual field strength, and
DY = —Sm AR5 Py (2.60)

where we use the notation
Sm fAY = (Sm f)THAE . (2.61)

The new term D* leads to corrections of the scalar potential of the ungauged theory Vi,
given in eq. (2.3), which now takes the form

1
Vig = Vi = D2ONAPA =V, + 5Sm A9 A0 BPAPE . (2.62)

The action for the bosonic fields of the N = 1,d = 4 gauged supergravity of the kind
considered here is obtained by replacing the partial derivatives and field strengths by gauge-
covariant derivatives and field strengths, replacing the potential V;; by Ve, above and by
adding a Chern-Simons term [29, 30] which is necessary to make the action gauge invariant

Seg = / {*R —2G,DZN¥DZ*T — 2Sm fas FN A*F* 4 2Refas FA A F*
Vi — %XAgQAA A AT A [dA2 + gxmﬂAF A AA]} . (2.63)
Gauge-invariance can be achieved only if
Xaso) =0, (2.64)

which is a constraint that also follows from supersymmetry.

3 Electrically and magnetically gauged N = 1, d = 4 supergravity

In this section we will discuss the most general gaugings of N = 1,d = 4 supergravity
by using as gauge group any subgroup of G = Gis, X Gy x U(1)g that can be embedded
into Sp(2nvy,R).
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From the purely bosonic point of view it would suffice to use the results of refs. [8, 15]
taking into account the particular structure of the global symmetry group of N =1,d =4
supergravity. This involves the introduction of new p-form fields p = 2, 3,4 which, together
with the electric and magnetic (to be defined) 1-forms of the theory, combined into AM,
constitute the standard 4-dimensional tensor hierarchy, reviewed in appendices B and C.
Its field content is

{AM Ba,Cu™, Dap, DgNT, DVNPRY

At the level of the action, it is not necessary to introduce all these fields, though. It is
enough to introduce the magnetic 1-forms A and 2-forms B 4.

This procedure, however, must be compatible with N = 1,d = 4 supersymmetry.
A supersymmetrization of the tensor hierarchy and the action is necessary. The super-
symmetrization of the tensor hierarchy is a first step towards the construction of a fully
supersymmetric action with electric and magnetic gaugings and this is going to be our goal
in this section.

Thus, we are going to repeat the construction of the 4-dimensional tensor hierarchy
checking at each step its consistency with N = 1, d = 4 supersymmetry: for each new p-form
field we will construct a supersymmetry transformation and we will check the closure of
the local N = 1,d = 4 supersymmetry algebra on it. The commutator of two N =1,d =4
local supersymmetry transformations acting on bosonic p-form fields is expected to have
the general form

[0y, 0e] = Og.c.t. + Ogauge + duality relations, (3.1)

where g 1. is a general coordinate transformation and dgauge is a gauge transformation that
should coincide with the one predicted by the bosonic tensor hierarchy purely on the basis
of gauge-invariance arguments. We also expect in general additional terms proportional to
duality relations between the new fields and the original fields of the ungauged N =1,d =4
supergravity. These duality relations project the tensor hierarchy onto the physical theory
reducing the number of independent fields.

Contrary to that expectation, we are going to see that, at least for some fields, it is
possible to construct supersymmetry transformations such that the local N = 1,d = 4
supersymmetry algebra closes without the use of any duality relation, i.e.

[577 ) 66] = Og.ct. T 6gauge . (32)

To make this possible we will have to introduce the additional p-form fields of the tensor
hierarchy in supermultiplets constructing, as a matter of fact, a supersymmetric tensor
hierarchy. Now, to project the supersymmetric tensor hierarchy onto the physical theory
we will use duality relations both for the bosons and fermions.

We have succeeded in supersymmetrizing in this way the hierarchy up to 2-forms (which
requires the introduction of linear multiplets) but these results strongly indicate that the
same should be possible for all p-forms in the tensor hierarchy.

Studying the closure of the local N = 1,d = 4 supersymmetry algebra we are going to
see that it is necessary to add more bosonic p-form fields to the standard tensor hierarchy.
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The main reason for this is the existence of the constraint eq. (2.43) which will be gener-
alized to the electric-magnetic case in eq. (3.30). This constraint restricts simultaneously
the terms P,,P; and the symmetries that can be gauged and reflects the breaking of the
U(1)r symmetry by the presence of a non-vanishing superpotential L.

The breaking of this symmetry will manifest itself in the existence of a new Stiickelberg
shift of the 2-forms B,, By

0B, ~ PaA, OBy ~ P\, (3.3)

where A is a 2-form that appears whenever £ # 0. We can only find this shift by studying
the closure of the local supersymmetry algebra. Therefore, it is necessary to simultaneously
construct the tensor hierarchy and study its supersymmetrization.

To construct the respective gauge-covariant 3-form field strengths H,, Hy the existence
of one new 3-form C' is required. We will find consistent supersymmetry transformations for
the needed 3-form C' (as well as for yet another 3-form C” that is dual to the superpotential).
In order to have gauge-covariant 4-form field strengths GQM and GﬁM we need to introduce
a set of 4-forms DM . The extended hierarchy of N = 1,d = 4 supergravity will, thus, have
the total bosonic field content

{AM’ Bua, CAM, C> C/, D ag, DE'NP, DNPQ, DM} .
We start by reviewing the non-perturbative symmetries of the ungauged theory.

3.1 Non-perturbative symmetries of the ungauged theory

The new, non-perturbative symmetries to be considered are symmetries of the “extended”
equations of motion of the ungauged theory which are the standard equations of motion
plus the Bianchi identities of the vector field strengths:

dF* =0. (3.4)

The Maxwell equations that one obtains from the action eq. (2.2) can be written as Bianchi
identities for the 2-forms G

dGp =0, Gat = fax(Z2)FET. (3.5)

This set of extended equations of motion (Maxwell equations plus Bianchi identities)
is invariant under general linear transformations

FA ! AEA BZA FZ
() = (&5 (&) =

However, consistency with the definition of G eq. (3.5) requires that the kinetic matrix

transforms at the same time as

f'=(C+Df)A+Bf)~ L. (3.7)
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Then f’ will be symmetric if
ATc—-cTA =0, B'D-D'B=0, ATD —CTB =€l xny (3.8)

where £ is a constant whose value is found to be £ = 1 by the requirement of invariance of
the Einstein equations.

These conditions can be reexpressed in a better form after introducing some notation.
We define the contravariant tensor of 2-forms GM, the symplectic metric Q/y and its
inverse QMN which we will use to, respectively, lower and raise indices

M _ FA 0 an Xny MN M
GY = s QMN: s Q QNP:—(S P. (39)
GA _]Inv Xny 0
Then, the Maxwell equations and Bianchi identities are formally invariant under the trans-
formations
M _ M ~N M A B
G = MY G, M = (My™) = , (3.10)
C D
satisfying
MTQM = Q. (3.11)
i.e. M € Sp(2ny,R) [20]. Infinitesimally!®
TA EA TAEA
MNM ~ Tonysony, + a?Ta ™ = ot ) (3.12)
Tasa Ta*a
and the condition M € Sp(2ny,R) reads

These transformations change the kinetic matrix and will only be symmetries of all the
extended equations of motion if they can be compensated by reparametrizations, i.e. fax
has to satisfy

aka'0; fax = o {=Tans + 2Ta 0" fryo — Ta™ foafrs} - (3.14)

The subalgebra of matrices that generate symmetries of the action (perturbative sym-
metries) are those with T4>* = 0, i.e. the lower-triangular matrices of eq. (2.39).

Observe that the transformations acting on the vectors are constrained to belong to
Sp(2ny,R). That this is a constraint follows from the fact that the global symmetry group
G is in general not a subgroup of Sp(2ny,R). We can thus only gauge those subgroups of
G that can be embedded in Sp(2ny, R).

5We include identically vanishing generators associated to U(1)g etc. On the other hand, it is clear that
the index A refers now to more symmetries than in the perturbative case.

,15,



The transformation rule of the kinetic matrix foy = Rax + ilpx eq. (3.7) can be
alternatively expressed using the Sp(2ny, R) matrix

IAE IAQRQZ
(MMN) = : M os = 6y, (3.15)
RaI'™  Ins + RaoI*™" Rrs,

which transforms linearly

M = MMMT, (3.16)

3.2 General gaugings of N =1, d = 4 supergravity

We now want to consider the most general gauging of N = 1,d = 4 supergravity, using
perturbative and non-perturbative global symmetries and using electric and magnetic vec-
tors, to be introduced next. In the ungauged theory we can introduce ny 1-form potentials
Ap and their field strengths Fy = dAp. The Maxwell equations can be replaced by the
first-order duality relation

Gp = Fy, (3.17)

since now the Bianchi identity dFy = 0 implies the standard Maxwell equation dG = 0.
The magnetic vectors Ay will be introduced in the theory as auxiliary fields and we will
study them from the supersymmetry point of view later on. The electric A* and magnetic

Ay vectors will be combined into a symplectic vector AM
M AA N A M NM
AV = /R Ap = QuNATY = (Ap, —A%), A = ANQYM D (3.18)
A

and used as the gauge fields of the symmetries described in the previous subsection.
In order to use all the 1-forms AM as gauge fields we need to add a magnetic component

to the embedding tensor, which becomes a covariant symplectic vector
Ot = (M, 91, (3.19)
where the index A ranges over all the generators of G = Gpes X U(1)g, so we have now
o (z) = AM(z)9 (3.20)
and the gauge transformations of the complex scalars, for instance, take the form
67" = AMY A keqt (3.21)

The embedding tensor describes the embedding of the gauge group into the global
symmetry group GG. The part of the global symmetry group that cannot be embedded into
Sp(2ny,R) is irrelevant for the purpose of gauging. There is thus no loss in generality
to replace the global symmetry group by Sp(2ny,R). In this sense the embedding tensor
provides an embedding of the gauge group into Sp(2nyv,R). Besides the embedding into
Sp(2ny,R) there are further constraints that decrease the rank of the group that we can
actually gauge.
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For instance, we must impose the constraint

QAP = —glAIMylBl,  — 0, = 9AMyy,B =0, (3.22)

1

4

which guarantees that the electric and magnetic gaugings are mutually local [8] and we

can go to a theory with only purely electric gaugings by a symplectic transformation.
The embedding tensor must satisfy further conditions. We define the matrices

Xun® =9 Tan”, (3.23)
which satisfy

Xmnp = XMPN, (3.24)

on account of eq. (3.13). Observe that the components It are not present in the Xp/np
tensors. Further, we impose the quadratic constraint!®

Qnu™ = IN Tan"9p" —IN 00" fap™ =0, (3.25)
to ensure invariance of ¥4 and the representation constraint 8]
Lune = Xunp) = Xun@Qpg = 0. (3.26)

This constraint is required by gauge invariance and supersymmetry.!” It implies eq. (2.64)
and also )
Xmnyp = _§XPMN = X(MN)P = ZP Ty (3.27)

where we have defined 1
AR —§QNPq9NA. (3.28)

This definition and that of the other projectors that appear in the 4-dimensional hierarchy

ZPA

are collected in appendix B. The tensor will be used to project in directions orthogonal

to the embedding tensor since, due to the first quadratic constraint eq. (3.22),
ZMA9, P =0. (3.29)

Finally, it should be clear that the constraint eq. (2.43) on the triple product of em-
bedding tensor, momentum maps and superpotential should be generalized to

(O0r2Ps + I Py)L = 0. (3.30)

Regarding the gauging of the U(1) g symmetry group we have the following possibilities.
If £ = 0 then the gauging shows up in the covariant derivatives of the fermions through
terms containing Py. The covariant derivatives acting on the scalars and vectors do not
‘see’ this gauging because Ky = T} = 0. If we have a non-vanishing superpotential then it

6Observe that 19Mﬁ does not occur in QNMA either.
"In ref. [21] it has been shown how this constraint gets modified in the presence of anomalies and the
modifications can cancel exactly the lack of gauge invariance of the classical action.
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must be that ¥%P, + ﬂMﬁPﬁ = 0 and in order to gauge the U(1)g symmetry it must be
identified with a U(1) subgroup of Gps.

We define gauge-covariant derivatives of objects transforming according to d¢ =
AM S0 by
Dp=dp+ AMby0. (3.31)

The gauge fields transform according to
SAM = —DAM + AAM = — (dAM + XnpMANAT) + AAM (3.32)
where AAM is a piece that we can add to this gauge transformation if it satisfies
It AAM = 0. (3.33)

The covariant derivatives of the scalars, gravitino and chiralinos read

D7 = dZ' + AMY Ak (3.34)
i

Q,Lﬂbu = {D,u - §AM,Lﬂ9MA,PA} Yy, (335)

DX’ = D' + D020 x" — AM9 20k, + %AMﬂMAPAx" : (3.36)

Observe that AAM drops automatically from the gauge transformations of these ex-
pressions because AM always comes projected by 0,4.

It is clear that we need to introduce auxiliary “magnetic gauginos” Ap in order to
construct a symplectic vector of gauginos AM whose covariant derivative is

DANM = {D — %ANﬁNAPA} MM — X pMANAE. (3.37)

The magnetic gauginos are the supersymmetric partners of the magnetic 1-forms. We will
discuss their supersymmetry transformation rules later.

So far, to introduce the general 4-dimensional embedding-tensor formalism we have
introduced magnetic 1-forms Ap and gauginos Ap. As discussed at the beginning of this
section, we have to find supersymmetry transformations for them and check the closure of
the local N = 1,d = 4 supersymmetry algebra.

3.3 The supersymmetric hierarchy

Before we deal with the supersymmetry transformations of the magnetic 1-forms that we
have introduced, we take one step back and study the closure of the local N = 1,d = 4
supersymmetry algebra on the 0-forms.

3.3.1 The scalars Z°

Their supersymmetry transformations are given by eq. (2.11), which we rewrite here for

convenience:

07" = ~le. (3.38)
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At leading order in fermions,

: 11—
6002 = Z0,0)e (3.39)

and all we need is the supersymmetry transformation for y?. This is given in eq. (2.59),
which we also rewrite here

SoX' =i DZn* + 269 D L7, (3.40)

where we have to take into account that the covariant derivative ©Z° is now given by
eq. (3.34). We get
[0y 02" = Og.ct. 2" + 0u 2", (3.41)

where 6g_c,t_Zi is a g.c.t. with infinitesimal parameter &*
Sget.Z' = £e7" = +£19, 7", (3.42)

T, _ * — *
¢ =@ —mte), (3.43)

and where 0, Z° is the gauge transformation eq. (3.21) with gauge parameter AM

67" = AMYy k47, (3.44)
AM = ¢graM (3.45)

This is just a small generalization of the standard result in which electric and magnetic
gauge parameters appear. As expected, no duality relations are required to close the local
supersymmetry algebra on the Z°.

3.3.2 The 1-form fields AM

As we have mentioned before, to define supersymmetry transformations for the magnetic
vectors A, it is convenient to introduce simultaneously magnetic gauginos'® Ay. This
is equivalent to introducing ny auxiliary vector supermultiplets. Symplectic covariance
suggests that we can write the following supersymmetry transformation rules for the electric
and magnetic 1-forms and gauginos:

§AM, = —ég’mAM +ec, (3.46)

SAM =~ [FMT 4 iDM] €, (3.47)

DN | =

where FM is the gauge-covariant 2-form field strength of A, to be defined shortly, and
where we have defined the symplectic vector

Mo DA _ DA
o= (2)=(,25). o

8 Magnetic gauginos have also been introduced in ref. [31].
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where now, the electric D* has been redefined, with respect to the purely electric gauging
case, to include a term with the magnetic component of the embedding tensor 944:

DN = —Sm A% (s + fiq 9Py (3.49)

Although at this point we do not need it, it is important to observe that there is a
duality relation between the magnetic gauginos and the electric ones

A = fasA®. (3.50)

The gaugino duality relation is local and takes the same form as the duality relation between
the magnetic and the electric vector field strengths:

FAT = fasF>T, (3.51)

which is obtained from the duality between electric and magnetic vectors Fy = Gj,
combined with eq. (3.5). These duality relations relate the supersymmetry transformation
SN to G Ap.

Now we can check the closure of the local supersymmetry algebra on AM. Tt is,
however, convenient to know beforehand the form of the gauge transformations that we
should expect on the right hand side of the commutator. The gauge transformations of
AM are given in eq. (3.32) up to a term AAM which is determined in the construction
of the gauge-covariant field strength F™. This term is also needed to have well-defined
supersymmetry transformations for all the gauginos.

As shown in ref. [8], this requires the introduction of a set of 2-forms B4 in FM, which
takes the form

1
FM = dAM + o Xyp M AN N AT+ 2By (3.52)
and is gauge-covariant under the transformations'?
pAM = —QAM _ ZMApN , (3.53)

1
opBa = DAg + 2T np [ANFP + §AN ANSRAT | + ABy, ZMAAB,=0. (3.54)

Let us now compute the commutator of two supersymmetry transformations on AM

To leading order in fermions, eq. (3.46) gives
5p0.AM = —ég*WsnAM +c.c. (3.55)
Using eq. (3.47) with the parameter 1, we find
[0y, 0JAM = " FM, + ZMAPLE, (3.56)
where £ is given by eq. (3.43) and we have used

SmDM = 27MAP, | (3.57)

9The label A in the gauge transformations indicates that these are the gauge transformations as predicted
by the tensor hierarchy.
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which follows from the definitions egs. (3.48), (3.49) and (B.1). We always expect a general
coordinate transformation on the right hand side of the form

Ot AM = L AM, = ¢/ 0,AM , + 0,6 AM, . (3.58)
Using the explicit form of the field strength '™ eq. (3.52) we can rewrite it as
5g.c.t.AM,u = gyFMu,u + gu(AMugy) + ZMA [BA,uugy — T NPAN;LAPugy] . (3'59)

Using this expression in the commutator and the definition eq. (3.45) of the gauge
parameter AM | we arrive at

[0y, 6] AM = 650 AM + 6, AM (3.60)

where, in complete agreement with the tensor hierarchy, 6, AM is the gauge transformation
in eq. (3.53) with the 1-form gauge parameter A4 given by

Ag = —TayunANAM £ by — Pat, (3.61)
ban = Bawe. (3.62)

Observe that no duality relation was needed to close the local supersymmetry alge-
bra on the magnetic vector fields. This result is a consequence of using fully independent
magnetic gauginos as the supersymmetric partners of the magnetic vector fields, i.e. trans-
forming as 6 Ay ~ 5T instead of . Ay, ~ GxT. In the later case we would have gotten
additional Gy, — Fx, terms to be cancelled by using the duality relation.

3.3.3 The 2-form fields B4

In order to have a gauge-covariant field strength F™ for the 1-forms we have been forced
to introduce a set of 2-forms B4 and now we want to study the consistency of this addition
to the theory from the point of view of supersymmetry and gauge invariance. We will first
study the closure of the supersymmetry algebra on the 2-forms B4 without introducing
its supersymmetric partners and, later on, we will introduce the 2-forms as components of
linear supermultiplets. In the first case, the local N = 1,d = 4 supersymmetry algebra will
close up to the use of duality relations while in the second case it will close exactly.

It is useful to know beforehand what to expect on the right hand side of the commutator
of two supersymmetry transformations acting on the 2-forms B4. The gauge transforma-
tions of the 2-forms are given in eq. (3.54) up to a term ABy4 which is constraint to satisfy
ZMAAB, = 0. In ref. ([15]) it was found that, in general,

ABj = =Y “AcM, (3.63)

for some 2-form parameters Ac™. Y43,¢ is the projector given in eq. (B.2) and is an-
nihilated by ZV4 by virtue of the quadratic constraint eq. (2.46) (see eq. (B.6)), as re-
quired by the gauge-covariance of F™. In generic 4-dimensional theories Y43, is the only
tensor that is annihilated by ZV4. At this point we have to remind ourselves that in
N = 1,d = 4 supergravity there is another constraint, given in eq. (3.30), that may lead to
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additional terms in the gauge transformation of the 2-forms since eq. (3.30) can be written
as ZMA(&L@Pg + 5Aﬁ73ﬁ)ﬁ = 0. To see if there are any such additional terms in the gauge
transformations of the 2-forms we need to compute the commutator of two supersymmetry
transformations on By4.

In any case, the generic tensor hierarchy prediction is that, with the gauge transfor-
mations eq. (C.2), which we rewrite here

6pBa =DAs+2T4Np [ANFP + %AN A 5hAP] — Yan“Ac™M, (3.64)
the gauge-covariant field strength of B, is as given in eq. (C.8)
Hy=9By+ TagpsAZ A [dAS + %XNPSAN A AP] + Yanu“Cc™M, (3.65)
where Cc™ is a 3-form whose gauge transformations are determined to be

1
pCcM =DAM — FM ANNe — 6,AM A Be — gTC NpAM A AN N5, AT+ AM He + ACM
(3.66)

where
Yanu“ACM =0, (3.67)

We will next see that eq. (3.30) leads to additional terms in the 2-form gauge trans-
formation. Inspired by the results of ref. [27], we found that, for the 2-forms By, the
supersymmetry transformation is given by

1 . i
5eBA;w = Z[aiPAényXZ + C.C.] + 5[7),46 ’y[uwy] — C.C.] + 2TAMNAM[M55ANV} . (3.68)

The commutator of two of these supersymmetry transformations closes up to a duality
relation to be described later on, a general coordinate transformation, and a gauge trans-

formation of the form

8, Ba = 6B — (342Ps + 04" Py)A, (3.69)
where §;, B4 is the standard hierarchy gauge transformation eq. (C.2) and where the 2-form
parameters A and Ac™ are given by

AcM = —AMBo — o™ — %TCQPAPAM A A9 (3.70)
A= —c+2Re(¢pL), (3.71)

v = €Vl = = Y€ (3.72)
cc™ = CcM upe? (3.73)
cur = Cpup€” . (3.74)

The parameters AM and A4 are, again, given by eqgs. (3.45) and (3.61), respectively. We
have introduced the anticipated 3-form C' with the gauge transformation

5, C = —dA, (3.75)
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to take care of the Stiickelberg shift parameter A. Strictly speaking we only need to
introduce C' when £ # 0 in which case, according to the constraint eq. (3.30), (92Pa +
Y Mﬁpﬁ) = 0. We can express this as a “constraint”

(902P, + ﬁMﬁPﬁ)C =0, (3.76)
SO

(2P + I PHA = 0. (3.77)
This constraint ensures that ZMAAB, = 0 so that FM remains gauge-covariant un-
der 0}, Ba.

The success of closing the supersymmetry algebra on the 2-forms, B4, that is evaluating
the commutator of two supersymmetry transformations (3.68), and showing that it gives
rise to local symmetries acting on B4 requires the use of the duality relation

1

H1I4 = _E*jAa (378)

where

ja=2k4,97 4+ cc., (3.79)

is the covariant Noether current 1-form and where the hierarchy gauge-covariant field
strength H 4 given in eq. (C.8) has been modified to:

H'y = Ha — (642P, + 64*P,)C . (3.80)

The modified field strength H’; transforms covariantly under the modified gauge transfor-
mations (3.69).

The right hand side of the duality relation (3.78) vanishes for A = a,f. For these
cases we expect to have currents bilinear in fermions which cannot appear at the order in
fermions we are working at.

The origin of the extra term in eq. (3.80) that is proportional to (642P, + 5Aﬁ73ﬁ) can
be traced back to the fact that the identity

" PaDpL* — Pal* =0, (3.81)

which is crucial for closing the supersymmetry algebra for the case A = a (it leads to a
cancellation of terms coming from the supersymmetry variation of the first and second
terms of eq. (3.68)) cannot be extended to the cases A = a, f in which we have introduced
fake (vanishing) Killing vectors.

The introduction of the 3-forms C' and C4™ into the result for the commutator
[0y, 0c) Bayw via the duality relation (3.78) was necessary in order to make the result gauge
invariant. Ultimately, this is only allowed if one can show that the supersymmetry algebra
can also be closed on the 3-forms C' and C4™. This will be shown to be the case later on.

,23,



3.3.4 The supermultiplet of B4

We are now going to show that if we add to the tensor hierarchy full linear multiplets®’
{BAuw,pa,Ca} where g4 is a real scalar and (4 is a Weyl spinor, instead of just the 2-
forms B4, as in the preceding section, we can close the local N = 1,d = 4 supersymmetry
algebra on the 2-forms exactly without the use of the duality relation eq. (3.78).

We will construct the supersymmetry rules of the linear supermultiplet first for the
case A = a after which this result will be generalized to include also the cases A = a,ff. The
above supersymmetry transformation rule eq. (3.68) suggests the fermionic duality rule

Ca = OiPax’ = ikl X", (3.82)
so we would have
1. ) s M N
deBayw = Z[ewﬂ,,(a +c.c]+ 5[7336 V) — c-.] + 2Ta N AT [0 AT ) (3.83)

The supersymmetry transformation rule of (, follows from the above duality rule:
0cCa = ik 00X = —ki, DZ'" + 20;PaGY Dje L7 . (3.84)

Using next the duality rule eq. (3.78) ja = 4Re(k,DZ%) = —2 H, we find
§.Ca = —i é Ha+ Sm(k,D,Z)7" | € + 2PaLre. (3.85)

To make contact with the standard linear multiplet supersymmetry transformations
we should be able to identify consistently

Sm(k:,DZ") = Dipa, (3.86)

for some real scalar @,. The integrability condition of this equation can be obtained by
acting with © on both sides. Using on the Lh.s. the property

Dk, = D7V (3.87)

ai»
and the Killing property, the integrability condition takes the form
— ZFMﬁMb/{?E;MMb}Z = fachMﬂMb(pc s (3.88)

which is solved by
— ikf‘a‘ikzwz = fab e - (3.89)
Given that the Killing vectors can be derived from the Killing prepotential P, which is

equivariant, it follows that

Kaikp) = 5£aPb = =5 fan“Pe, (3.90)

20Similar supermultiplets have been introduced in electro-magnetically gauged globally supersymmetric
N = 2,d = 4 field theory [31].
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and we can finally identify

< 1
Sm(k,,D7") = —59733. (3.91)
The supersymmetry transformations of the linear multiplet {Ba ., @a,Ca} are given by
0eCa = —1 T Hat Dpa| € — 4paLre, (3.92)

1 _ ok
8 Bayw = Z[enga +c.c.] —i[pa€yth) —c.c] + 2TaMNAM[M5€ANV] , (3.93)

1-
Ocpa = —ggae + c.c.. (3.94)

The duality relations needed to relate these fields to the fundamental fields of the
N =1,d = 4 gauged supergravity are

Ca = OPax’ (3.95)
1

Ha = _5 *ja, (396)
1

Pa = —5733. (397)

The supersymmetry algebra closes on all the fields of the linear multiplet without the
use of any duality relation.

Now that we know the supersymmetry transformation rules for A = a we will gener-
alize them to all values of A. The supersymmetry transformations of the linear multiplet

{Ba uvs PA, Ca} are given by

1
0a = —i [E W)+ C}D@A} € —404%paLl’e, (3.98)
1 . %
8By = Z[EWWCA + c.c.] = ifpa€ Yy —c.c] + 2TAMNAM[H6€AN,,] . (3.99)
1-
depp = —gg“Ae +c.c.. (3.100)

The duality relations, egs. (3.95) to (3.97), become

Ca = 0iPax’, (3.101)
1

Hy = —5*ja, (3.102)
1

pa = —§7DA. (3.103)

Observe that some terms on the right hand side are zero for A = a,{, at least to leading
order in fermions.

Now the gauge parameters that appear on the right hand side of the commutator
of two supersymmetry transformations are different from those we found in the previous
section and, therefore, do not match with those we found in the case of the 1-forms. To
relate the parameters of the supersymmetry algebra in the case with and without the linear

supermultiplets we also need to use the above duality relations. For instance, A4 is given
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by eq. (3.61) with P4 replaced by —2p4. This means that, in order to supersymmetrize
consistently the tensor hierarchy we also must replace P4 by —2¢4 in the supersymmetry
transformation rules of the gauginos eq. (3.47) (i.e. in the definition of DM eqs. (3.48)
and (3.49)). There are furthermore also 3-forms contained in the transformation rule for
Ca. Thus, if we continue this program we need to find a way to close the algebra on all the
3-forms without using any duality relations.

However, we will not pursue here any further the supersymmetrization of the tensor hi-
erarchy for the higher-rank p-forms but we think that the above results strongly suggest that
an extension with additional fermionic and bosonic fields of the tensor hierarchy on which
the local supersymmetry algebra closes without the use of duality relations must exist. The
duality relations must project the supersymmetric tensor hierarchy on to the N = 1 super-
symmetric generalization of the (bosonic) action which will be given later in eq. (3.126).

As we have seen in the vector and 2-form cases, the duality relations among the addi-
tional fields (fermionic Ay, ¢4 and bosonic ¢ A) are local as opposed to those involving the
original bosonic fields (Ax, B4), which are non-local and related via Hodge-duality.

3.3.5 The 3-form fields C4M

We will be brief here because the construction of the field strength and the determination

of the gauge transformations of the 3-forms C4 are similar to those of the other fields.
We first remark that, in order to make the standard hierarchy’s field strength G

gauge-invariant under the new gauge transformations, we must modify it as follows:

G/AM =M+ (542P, + 6Aﬁ73ﬁ)DM, (3.104)

where G4 M is given in eq. (C.9) and DM is a 4-form transforming as
1
5, DM =oxM 4 (FM - §ZMABA> AA, (3.105)

and where we must also modify the gauge transformation rules of the 3-forms C4™ to be
5,CaM = 5,Ca™M — (542P, + 04*Py)DNM (3.106)

In order to prove this result we have made use of the constraint eq. (3.30) and also
of the fact, mentioned in section 2.2, that the directions A = a for which P, # 0 must
necessarily be Abelian, so

Yan (642Pa + 64"P;) L = 0, (3.107)

etc.
Then, the supersymmetry transformations of the 3-forms C4M are given by

[
60AM ) = -3 [Pa€ oM™ — c.c.] = 3B 6AM ;) — 2Ta pAM [, AT |0 A% .

(3.108)
The local N = 1,d = 4 supersymmetry algebra closes on C4™ upon the use of a

lp

duality relation to be discussed later. The gauge transformations of C4™ that appear on
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the right hand side are the ones described above with

Apc = dpc + B[B N bc} + 2T[B‘NPAPAN VAN BC} , (3109)

ANPQ — gNPQ L g\ AN A (FQ) — Z29CB) — iXRS(QAPAN) ANAEAAS | (3.110)

1
A = dp™" = ANCR" 4 STporAAN A AT A AT, (3.111)

where dpcywvpy = DBCuvps€?, and similarly for dVPQ and dpNP. The gauge transformation
parameters AM, A, and A,™ are, again, given by eqgs. (3.45), (3.61) and (3.70), respectively.

In the closure of the local supersymmetry algebra we have made use of the
duality relation

1
aWM= —5 Re(PADM). (3.112)
According to the results of ref. [15], the duality relation has the general form

1 2%

M o~
G4 _2*879MA'

(3.113)

Comparing these two expressions and using the relation between the potential of the super-
gravity theory and the fermion shifts, we conclude that, after the general electric-magnetic
gauging the potential of N = 1,d = 4 supergravity is given by

1 1
Vemg = Vu — 5 %e DMy APa = Vi + §MMN19MA19NA7>A7>B, (3.114)
where M is the symplectic matrix defined in eq. (3.15). It satisfies
W mg /090 = —Re(DMPy). (3.115)

There may exist a supermultiplet containing the 3-forms C4™ such that the super-
symmetry algebra closes without the need to use a duality relation. We leave it to future
work to study its possible (non-)existence.

3.3.6 The 3-form C and the dual of the superpotential

We have seen that the consistency of the closure of the local supersymmetry algebra on
the 2-forms B, and By requires the existence of a 3-form field that we have denoted by C,
whose gauge transformation cancels the Stiickelberg shift of those 2-forms.

An Ansatz for the supersymmetry transformation of C' can be made by writing down
3-form spinor bilinears that have zero Kahler weight and that are consistent with the
chirality of the fermionic fields. Further, from eq. (3.71) it follows that there will be no
gauge potential terms needed in the Ansatz. We thus make the following Ansatz

. 1 ;
0eCupp = —3inL E*'y[w,w;;] — 577D¢£E*7prl +c.c., (3.116)

where 7 is a constant to be found. It turns out that the local supersymmetry algebra
closes for two different reality conditions for 7, which leads to the existence of two different
3-forms that we will call C' and C”.
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1. For n = —i the algebra closes into the gauge transformations required by the 2-forms
B, and By provided that the field strength G' = dC' vanishes. As discussed earlier
there may be non-vanishing contributions if we were to construct the supersymmetry
algebra at the quartic fermion order.

2. For n € R the algebra closes into the following gauge transformation
bgaugeC’ = —dA’, (3.117)
where the 2-form A’ is given by
N = —29Sm(Lg), G = Clu 87 (3.118)
provided the field strength G’ = dC” satisfies the duality relation

G = wn(—24|L|* +8G " D;,LDj L") . (3.119)

Observe that the right hand side is nothing but the part of the scalar potential
eq. (3.114) that depends on the superpotential. Actually, if we rescale the superpoten-
tial by £ — nL, then we can rewrite the above duality relation in the standard fashion

1 0Vemg

- 12
G 5 * on (3.120)

and, therefore, we can see the 3-form C’ as the dual of the deformation parameter associated
to the superpotential, just as we can see the 3-forms C4™ as the duals of the deformation
parameters U4

Observe that, had we chosen to work with a vanishing superpotential we would have
found the duality rule G’ = 0. This suggests a possible interpretation of the 3-form C' to be
explored: that it may be related to another, as yet unknown, deformation of N =1,d =4
supergravity which has not been used. The full supersymmetric action is needed to confirm
this possibility or to find, perhaps, a term bilinear in fermions which is dual to C.

Finally, observe that neither of the 3-forms C,C’ was predicted by the standard
tensor hierarchy. C', though, is predicted by the extension associated to the constraints
egs. (3.30) and (3.107).

3.3.7 The 4-form fields DpN?, D g, DNPQ DM

In the previous sections we have introduced four 4-forms DgN*, D g, DVPY, DM in order
to close the local supersymmetry algebra and have fully gauge-covariant field strengths.
We thus expect that we can also find consistent supersymmetry transformations for all
these 4-forms.

For the three 4-forms DpNP, D g, DNPQ there is a slight complication that has to
do with the existence of extra Stiickelberg shift symmetries. There are two such shift
symmetries and in appendix C they correspond to the parameters AgV?) and Aggp?.
The origin of these symmetries lies in the fact that the W tensors that appear in the field
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strengths of the 3-forms are not all independent. The symmetries result from the iden-
tities (B.16) and (B.17) together with the constraints Lypg = Q4P = Qny? = 0. This
means that if we want to realize N = 1 supersymmetry on the 4-forms DgN?, D g, DVNFQ

(NP) and Aggp? will appear on the right hand side of commutators as

the parameters Ag
part of the local algebra.

Most of these features are already visible in the simpler case of the ungauged theory,?!
i.e. for ¥pr* = 0 and even when the ungauged case has no symmetries that act on the
vectors, i.e. when all the matrices T4 = 0. We will restrict ourselves to realizing the
supersymmetry algebra on the 4-forms for the ungauged theory with T4 = 0 for all A for
simplicity. The 4-form supersymmetry transformations in this simple setting are given by

6eDap = —%*P[AaiPB]EXi—i-C.C. —B[A/\&BB} , 3.121

5.DNPQ — 10AN A FP A5 AD

8. DN = Ot A S AN .

3.122

(3.121)
(3.122)
(3.123)
5.DM — —% * LM 4 e+ C NS AM (3.124)
When 934 = 0 and T4 = 0 the only place where there still appears a Stiickelberg shift

parameter is in the gauge transformation of Dg¥*. From the commutators we find that
ApWNP) = 9NN EP) A B . (3.125)

3.4 The gauge-invariant bosonic action

It turns out that in order to write an action for the bosonic fields of the theory with electric
and magnetic gaugings of perturbative and non-perturbative symmetries it is enough to
add to the fundamental (electric) fields just the magnetic 1-forms A, and the 2-forms By.
The gauge-invariant action takes the form

Se-mg = / {*R —2G,DZNKDZ*TT — 23 m fan FN A KF= 4 2Re fas FA A F*

1 4
— 4 Vomg — 4254 B4 A (Fg— §ZEBBB> — gX[MN}EAM/\AN/\ (F*— Z*PBp)

2 1
—gX[MN]EAM A AN A <dAZ — ZX[PQ]EAP AN AQ> } . (3126)

The scalar potential V,_p,g is given by eq. (3.114). Furthermore, the gauge transformations
that leave invariant the above action (d,) are those of the extended hierarchy (4) except
for the 2-forms:

6uBa = 6,Ba — 2TanpAY (FF = GP) . (3.127)

ZMA ¢4 that we do not need

The action contains the 2-forms B4 always contracted with
to worry about the different behavior of B, and B,, By under gauge transformation due to

the extra constraint eq. (3.77).

2INote that the hierarchy remains non-trivial for I = 0.
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A general variation of the above action gives

58 , 0 ) 58
— Nz i . M
) /{59 sg <5Z 570 +c.c.> OAM N w7 + 2084 A*—(SBA} , (3.128)

where the first variations with respect to the different fields are given by

S . I | 4 .
- *59;“/ = Guv +2Gij- [QMZZ@VZ*] - §guu@pZZ©pZ*] }
1
_GM(“lp*GMM,) + §g,wVe_mg, (3.129)
168 i 1
~557 = Gij*D*xDZ" _81‘GM+/\GM+—*§3¢Ve_mg, (3.130)
1 S 1 . 1
_Z*M—M =9DGy — ZﬂMA *J4+ §TAMNAN A 19PA(FP —Gp), (3.131)
)
*SEr = WPA(Fp — Gp). (3.132)

The above equations are formally symplectic-covariant and, therefore, electric-
magnetic duality symmetric. Both the Maxwell equations and the “Bianchi identities”
have now sources to which they couple with a strength determined by the embedding
tensor’s electric and magnetic components.

It is expected to be possible to find a gauge-invariant action in which all the hierarchy’s
fields appear (as was done in [15]) if one assumes that none of the constraints on the embed-
ding tensor are satisfied. Then, the 3-forms C4™ and the 4-forms DN Dap, DNPQ, DM
are introduced as Lagrange multipliers enforcing the constancy of the embedding tensor
and the algebraic constraints QnpP =0, QAB =0, Lypg = 0 and (vﬂM@P@—l—vﬂMﬁPﬁ)E =0,
respectively, but we will not study this possibility here.

It should be stressed that, even though the action eq. (3.126) contains 2ny vectors and
some number np of 2-forms B, it does not carry all those degrees of freedom. To make
manifest the actual number of degrees of freedom we briefly repeat here the arguments
of [8] regarding the gauge fixing of the action (3.126). First, we choose a basis of magnetic
vectors and generators such that the non-zero entries of 9% arrange themselves into a
square invertible submatrix 9/?. We split accordingly App = (Arp, Auy). It can be shown
by looking at the vector equations of motion that the Lagrangian does not depend on the
Ay, ie. 0L/0Ay, = 0. Further, the electric vectors AIH that are dual to the magnetic
vectors Ay, which are used in some gauging, have massive gauge transformations, SA! p=
-9 MAI — ! iAw and can be gauged away. The np 2-forms B; can by eliminated from the
Lagrangian by using their equations of motion eq. (3.132). The 2-forms appear without
derivatives in eq. (3.132) so that it is possible to solve for them and to substitute the on-
shell expression back into the action. This is allowed as the 2-forms appear everywhere (up
to partial integrations) without derivatives. One then ends up with an action depending
on np magnetic vectors AIH and ny — np electric vectors AY e

The relation between the tensor hierarchy and the action (or its equations of motion)
as well as the physical interpretation of the field content of the extended hierarchy will be
discussed in the next section.

,30,



4 Summary and conclusions

We have discussed the possible symmetries of N = 1,d = 4 supergravity and their gauging
using as gauge fields both electric and magnetic vectors.

When using both electric and magnetic 1-forms as gauge fields at the same time one
is also compelled to introduce 2-forms Ba, associated to all the possible symmetries of
the theory. For each electric vector A* whose magnetic dual A, is gauged, because the
magnetic components of the embedding tensor 9*4 do not vanish, one introduces a 2-
form 92 B4 in its field strength. A® has a massive gauge transformation and it forms
a Stiickelberg pair with the 2-form ¥*4B,4. By electro-magnetic duality we end up with
Stiickelberg pairs AM 9,4 By.

The embedding tensor-projected 2-forms 93,2 B, are dual to the embedding tensor-
projected Noether currents that are associated to gauged isometry directions 93,2,
whereas the remaining 2-forms B, are dual to ungauged isometry directions. The 2-forms
B, and By are pure gauge at lowest order in fermions, but it is to be expected that they
are actually dual to the Noether currents associated to the respective symmetries, which
are bilinear in fermions. To properly test this idea one would have to construct the super-
symmetry algebra at quartic order in fermions.

We have seen that the presence of a non-vanishing superpotential breaks the global
symmetries that we have denoted with the indices ; a,#. Thus, if £ # 0, we must set
(902Pa + Ur*Py) = 0, which is a new constraint that the embedding tensor must satisfy.
We have written it in the form eq. (3.30) to handle the cases £ = 0 and £ # 0 simulta-
neously. When £ # 0, then, N = 1,d = 4 supersymmetry implies that the 2-forms B,, By
transform under new Stiickelberg shifts parametrized by a 2-form gauge transformation
parameter A. Still, since A # 0 only when £ # 0, and in this case we have to impose the
new constraint (something we have expressed through eq. (3.77)), the gauge transforma-
tions of the projected 2-forms ZMAB, are left unchanged by the new 2-form Stiickelberg
shifts. Therefore the field strengths F'™ and the action keep their standard form.

In the standard tensor hierarchy it is necessary to introduce 3-forms C'4™ to construct
gauge-covariant field strengths H,4 for the 2-forms By. These 3-forms are the dual of
the embedding tensor ¥5,4. However, when £ # 0, the standard tensor hierarchy field
strengths H4 need to be modified by the addition of a 3-form C', into H;, see eq. (3.80).
The 3-form C' must absorb the new Stiickelberg shifts of the 2-forms B,, By, but one has
to show that N = 1,d = 4 supergravity allows for such a 3-form.

We have found consistent supersymmetry transformation rules for two 3-forms C and
(' the first of which has precisely the required gauge transformations. C’ is unexpected
from the hierarchy point of view but turns out to be the dual of the superpotential,
seen as a deformation of the ungauged theory. The fact that it is not predicted by the
hierarchy (even in its extended form which includes the constraint eq. (3.30)) is due to the
fact that the superpotential is not associated to any gauge symmetry, which is the basis
of the tensor hierarchy. On the other hand, the existence of the 3-form C suggests the
possible existence of another deformation of N = 1,d = 4 supergravity unrelated to gauge
symmetry and to the superpotential.
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Again, in the £ # 0 case the field strengths Go™ need to be modified by the addition of
new 4-forms DM not predicted by the standard hierarchy, which must absorb gauge trans-
formations related to A. In the standard hierarchy the 4-forms D", Dsg, DNP Q are as-
sociated to the constraints Qnp?, Q45, Ly pQ- The fourth 4-form that appears when £ # 0
in N = 1,d = 4 supergravity could well be related to the constraint (2P, + 9 *P;) = 0
that the embedding tensor must satisfy. This can only be fully confirmed by the construc-
tion of a supersymmetric action containing all the p-forms as in [15]. Nevertheless, it is clear
that, when we vary the action without any constraints imposed on the embedding tensor, we
expect it to be necessary to introduce a 4-form D™ multiplying that constraint. The gauge
transformations of the 4-forms D™ should compensate for this lack of gauge invariance.

Some, but not all, of the p-forms in the hierarchy may be associated to dynamical
supersymmetric branes. In order to construct a k-symmetric action for a (p— 1)-brane that
couples to a certain p-form, two necessary conditions are that the p-form transforms under
no Stiickelberg shift and that under supersymmetry transform into a gravitino multiplied
by some scalars may couple to branes. In N = 1,d = 4 supergravity the p-forms that satisfy
this condition are the (subset) of 2-forms B, whose gauge transformations are massless.
These are the 2-forms whose field strengths are dual to ungauged isometry currents. From
the analysis of [19, 27] we know that these couple to strings (one-branes that have been
referred to as stringy cosmic strings). Another form which satisfies the criteria is the 3-form
C" which is a natural candidate to describe couplings to domain walls. We note that there
are no 1-forms and 4-forms that can couple to a massive brane. There are thus no 1/2 BPS
black holes in the theory and no 1/2 BPS space-time filling branes. The latter fact may be
qualitatively understood from the fact that one cannot truncate the minimal N =1,d =4
supersymmetry algebra to a supersymmetry algebra with half of the original supercharges.
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A Kahler geometry

A Kihler manifold is a complex manifold on which there exist complex coordinates Z¢ and
7Z*" = (Z%)* and a real function KC(Z, Z*), called the Kdhler potential, such that the

ds® = 2G;+ dZ'dZ*" (A1)
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with
Giix = 0;0+K . (A.2)

The Kahler (connection) 1-form Q is defined by

| —

Q=

- (dZ'O;K — dZ*" 9K), (A.3)

[\

and the Kdhler 2-form J is its exterior derivative
J =dQ = iGy-dZ' NdZ*T . (A.4)
The Kahler potential is defined only up to Kdhler transformations
K'(Z,Z*)=K(Z,Z*) + f(Z)+ f*(Z*), (A.5)

where f(Z) is any holomorphic function of the complex coordinates Z? that leave the Kihler
metric and 2-form invariant. The components of the Kéahler connection 1-form transform
according to

Q= Q- af. (A.6)

Objects with Kéhler weight (q,q) transform by definition under the above Kéhler
transformations with a factor e~ (4/+4/)/2 and their Kahler-covariant derivative D is

Di=V;+199;, Di» = Vi —1iq Qi+, (A.7)

where V is the standard covariant derivative associated to the Levi-Civita connection. The
Ricci identity for this covariant derivative is, on objects without any indices and Ké&hler

weight (g, q)
1

[D;, Dj+] = 5(@ = q)Gij+ - (A.8)

When (¢,q) = (1,—1), this defines a complex line bundle over the K&hler manifold
whose first, and only, Chern class equals the Kéhler 2-form 7, i.e. a Kdhler-Hodge (KH)
manifold. These are the manifolds parametrized by the complex scalars of the chiral mul-
tiplets of N = 1,d = 4 supergravity. Furthermore, objects such as the superpotential and
all the spinors of the theory have a well-defined Kéhler weight.

We will often use the spacetime pullback of the Kéhler-covariant derivative on tensor
fields with Kéhler weight (¢, —q) (weight ¢, for short):

:Du = vu + iqgu ) (AQ)

where V, is the standard spacetime (and/or Lorentz-) covariant derivative plus possibly
the pullback of the Levi-Civita connection. Q,, is the pullback of the Kahler 1-form

Q, = %(aﬂziai/c — 0,77 9pK). (A.10)

,33,



B Projectors of the d = 4 tensor hierarchy

The 4-dimensional hierarchy’s field strengths are defined in terms of the invariant tensors
ZMA Y 0B, WeMAB, WCNPQM, WenpEM which act as projectors. In this appendix we
collect their definitions and the properties that they satisfy.

The projectors are defined by

. +1004,
zPA = —§QNP79NA = (B.1)

_%79AA )
Yan© = OB fap® — TanNIn©, (B.2)
WMAB = _ zMIA5 Bl (B.3)
Wenpg" = To(vpdg)™ (B.4)
Wenp™™ = I8P fop”6p™ + XnpMoc? — Yepon™ . (B.5)

They satisfy the orthogonality relations
1
2N = S QeNT =0, (B.6)
Yarur“WeMP = Yau“Wenp™ = Yan“Wenp™ = 0. (B.7)
The W projectors are related to the embedding tensor constraints by
I WeMAP =247, (B.8)
In“Wenrg™ = Lpg, (B.9)
I WenpPM = 2Qnp” . (B.10)
Under variations we have
1
09 WM AP = 90 oWMAT = S50 WM AP) = 6Q7 (B.11)
50 Wenpg™ = 6Lnpg (B.12)
1

0 WenpPM = 93 WenpPM = gé(ﬂMCWCNpEM) =6Qnp”. (B.13)

The constraints egs. (3.22), (3.25) and (3.26) are related through the following identities
1

Q*PYpp” — §ZNAQNPE =0, (B.14)

Quuiny™ —3LunpZ"* —2Q* P Tpyn = 0, (B.15)

where eq. (B.14) can be obtained from eq. (B.15) by multiplying the latter by ZV¥. Differ-
entiating these identities with respect to the embedding tensor, using egs. (B.11)—(B.13),
we also find the following relations among the W tensors:

1 1
WCMABYBPE _ §ZNAWCNPEM _ ZQMPE6é+ QAB [5nyCE _ TBPM(Sg] — 0’ (B16)

3
Weun '@ = 3Weunp® 254 — 5LMNQ(SCA —2We94B T iy = 0. (B.17)
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C Gauge transformations and field strengths of the d = 4 tensor hierar-
chy

The gauge transformations of the different fields of the tensor hierarchy are

SR AM = —AM _ ZMAN | (C.1)
1
OnBa = DA+ 2T 4 NP |:ANFP + §AN AN (5hAP:| — YAMCACM , (02)
1
pCc™M = DAM — FM A Ao — 5,AM A Be — gTC NpAM A AN A 6, AT
+AM Ho — WeMABA 45 — WonpoMANTQ — WonpPMARNT (C.3)
SnDap = DAap + 2T ann Ay M) + Yiu pP (Ap” — Bpy AAE"T) + DAa A By
1
—2A(4 A Hp) + 2T 4 np [ANFP — 5AN A(ShAP} A Bip, (C.4)
~ 1
5hDENP _ @AENP +AE(NP) + §ZNBABEP _ FN /\AEP
1
+CEP VAN 5hAN + ETEQRAN ANAP A ACQ A 5hAR + ANGEP , (C.5)
SpDNFPQ = ANPQ _ 37 (NIAR ,IPQ) _ 9 AN A gAP A 5, A9
—%XRS(NAH A AR A A G, AIR) — 3NN P A FQ) (C.6)

where we remark that AV is a 3-form and AE(NP) is a 4-form.

Their gauge-covariant field strengths are
FM _ gaAM %X[NP]MAN NAP 4 ZMAR 7
Hy = ©Bj+ Tars Al A [dAS + %XNPSAN A AP} + YaufceM, (C.8)
GeM =o0:M + [FM — %ZMABA] A Be + %TCSQAM A A% A dA®
+1—12Tc sQXNTCAM A AT A AN A AT
+WeMABDag + Wonpo™ DVPC + WonpPM DENP (C.9)

These field strengths are related by the following hierarchical Bianchi identities

OFM = zMAg, (C.10)
DHA = Yau“Ge™M + TapynFM ANFY . (C.11)
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